Uncertainties of lattice QCD calculations of heavy–light pseudoscalar meson decay constants

Benjamin Haas

Laboratoire de Physique Théorique (Université Paris XI / CNRS)

February 17, 2009

Benjamin Haas (LPT)

SuperB Workshop

Outline

Physics motivations

2 Lattice calculations: sources of systematic errors

Outline

Lattice calculations: sources of systematic errors

3 D_(s) Decays

$B_{(s)}$ decays

Leptonic decays in the Standard Model

$$\Gamma(P^+ \to \ell^+ \nu_{\ell}) = f_P^2 \times |V_{qQ}|^2 \frac{G_F^2 m_{P^+}^3}{8\pi} \left(\frac{m_{\ell}}{m_{P^+}}\right)^2 \left(1 - \frac{m_{\ell}^2}{m_{P^+}^2}\right),$$

- Hadronic decay constant
- OKM matrix element
- 4–fermion coupling

 \rightarrow A comprehensive laboratory for both standard and non standard physics:

Leptonic decays beyond the standard model

IF WE KNOW THE VALUE OF f_P

- Check the CKM matrix unitarity
- Constrain extra contributions beyond G_F

Leptonic decays beyond the standard model

IF WE KNOW THE VALUE OF f_P

Check the CKM matrix unitarity

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1 \pm 1\%$$

 \Rightarrow Relevant constraint on BSM models. E.G. : in SO(10):

$$M_{Z'} \stackrel{\text{CKM}}{>} 1.4 \text{ TeV}$$
 VERSUS $M_{Z'} \stackrel{\text{direct}}{>} 0.72 \text{ TeV}$ [PDG]

Constrain extra contributions beyond G_F

Leptonic decays beyond the standard model

IF WE KNOW THE VALUE OF f_P

Check the CKM matrix unitarity

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1 \pm 1\%$$

 \Rightarrow Relevant constraint on BSM models. E.G. : in SO(10):

 $M_{Z'} > 1.4 \text{ TeV}$ VERSUS $M_{Z'} > 0.72 \text{ TeV}$ [PDG]

Constrain extra contributions beyond G_F $G_F = \frac{g}{4\sqrt{2}M_W^2} = 1.66371(6) \times 10^{-5} \text{ GeV}^{-2}$ from μ -lifetime [μ Lan,2007] What if: Leptonic decays are clean but ...

$$\Gamma(P^+ \to \ell^+ \nu_{\ell}) = f_P^2 \times \left| V_{qQ} \right|^2 \frac{G_F^2 m_{P^+}^3}{8\pi} \left(\frac{m_{\ell}}{m_{P^+}} \right)^2 \left(1 - \frac{m_{\ell}^2}{m_{P^+}^2} \right),$$

• Extremely rare due to helicity suppression $\propto \left(\frac{m_{\ell}}{m_{P^+}}\right)^2$.

SUPERB FACTORY

Theoretically appealing: we want the less non-perturbative QCD in the game

- No hadron in the final state
- f_P encodes the low energy QCD: only a constant \neq semi–leptonic

Non-perturbative \Rightarrow Models/Sum Rules/LATTICE

Outline

2 Lattice calculations: sources of systematic errors

3 D_(s) Decays

$A B_{(s)}$ decays

Lattice calculations

The main source of uncertainties is due to unsolved non–perturbative QCD effects \Leftrightarrow error on f_P

Lattice QCD is the only method to compute hadronic quantities

- from <u>FIRST PRINCIPLES:</u>
 - We want no more constant that in QCD (masses / coupling)
 - We want no extra assumptions (e.g., sum rules rely on the *global quark–hadron duality*)
- (2) to an arbitrary accuracy: Monte–Carlo techniques, errors fall as $1/\sqrt{N_{\rm configs}}$

However, many sources of systematic uncertainties need to be assessed carefully

- Effects of discretization
- Pinite size effects
- Ohiral extrapolations
- Heavy quark treatment
- Quenching
- Existence of the continuum limit

Effects of discretization Discretized space with lattice spacing a:

$$\Phi_{\text{Latt}}(a) = \Phi_{\text{Cont}} + (am)\Phi_1 + (am)^2\Phi_2 + \dots$$

 $\mathcal{O}(a)$ -improved in general $\Rightarrow \Phi_1 = 0$ for all physical quantities. But what about $\Phi_{n>2}$?

↓ Beware of heavy quarks

Typically, $a \le 2.5 \text{ GeV}^{-1}$. With the *b* quark, $(am_b) > 1$! Heavy quark treatment: see 4-

- Pinite size effects
- Ohiral extrapolations
- Heavy quark treatment
- Quenching
- Existence of the continuum limit

- Effects of discretization ⇒ BEWARE OF HEAVY QUARKS
- Pinite size effects
- Ohiral extrapolations
- Heavy quark treatment
- Quenching
- Existence of the continuum limit

- Effects of discretization ⇒ BEWARE OF HEAVY QUARKS
- Finite size effects
 Finite box of size $L \simeq 2$ fm:

$$\Phi_{\text{Latt}}(L) = \Phi_{\text{Cont}} + C \times e^{-M_{\pi}L}$$

BEWARE OF LIGHT QUARKS

- Ohiral extrapolations
- Heavy quark treatment
- Quenching
- Existence of the continuum limit

- **1** Effects of discretization \Rightarrow **BEWARE OF HEAVY QUARKS**
- **2** Finite size effects \Rightarrow **B**EWARE OF LIGHT QUARKS
- Ohiral extrapolations
- Heavy quark treatment
- Quenching
- Existence of the continuum limit

- Effects of discretization \Rightarrow **BEWARE OF HEAVY QUARKS**
- **2** Finite size effects \Rightarrow **B**EWARE OF LIGHT QUARKS
- Ohiral extrapolations

On the lattice : $m_q \gtrsim rac{m_s^{
m phys}}{10}$ whereas $m_{u,d}^{
m phys} pprox rac{m_s^{
m phys}}{25}$

- \Rightarrow An extrapolation is needed toward the physical pion mass
 - Extrapolate the measure behavior (linear, quadratic)
 - Use chiral perturbation theory ⇒ (potentially large) logarithms effects

BEWARE OF THE LOGS

1

- Heavy quark treatment
- Quenching
- Existence of the continuum limit

- **1** Effects of discretization \Rightarrow **BEWARE OF HEAVY QUARKS**
- **2** Finite size effects \Rightarrow **B**EWARE OF LIGHT QUARKS
- Chiral extrapolations \Rightarrow **BEWARE OF THE LOGS**
- Heavy quark treatment
- Quenching
- Existence of the continuum limit

- Effects of discretization \Rightarrow BEWARE OF HEAVY QUARKS
- **2** Finite size effects \Rightarrow **BEWARE OF LIGHT QUARKS**
- Ohiral extrapolations ⇒ BEWARE OF THE LOGS
- Heavy quark treatment

Heavy quark integrated out and its effects included in $1/m_b$ expansion on the lattice \Rightarrow problem with scales $m_q < \Lambda_{\rm QCD} < 1/a < m_b$.

Beware!

How to match non-perturbatively the effective theory on the lattice to the continuum QCD is still an open question

Quenching

Existence of the continuum limit

- Effects of discretization \Rightarrow **BEWARE OF HEAVY QUARKS**
- **2** Finite size effects \Rightarrow **B**EWARE OF LIGHT QUARKS
- Chiral extrapolations \Rightarrow **Beware OF THE LOGS**
- ④ Heavy quark treatment ⇒ PERTURBATIVE VS. NON-PERTURBATIVE RENORMALIZATION
- Quenching
- Existence of the continuum limit

- Effects of discretization \Rightarrow **BEWARE OF HEAVY QUARKS**
- **2** Finite size effects \Rightarrow **B**EWARE OF LIGHT QUARKS
- **3** Chiral extrapolations \Rightarrow **Beware OF THE LOGS**
- ④ Heavy quark treatment ⇒ PERTURBATIVE VS. NON-PERTURBATIVE RENORMALIZATION
- Quenching
 - Calculation used to be carried out in the quenched approximation $N_f = 0$

 \Rightarrow Systematic uncertainty incalculable a priori.

Now, $N_f = 2$, $N_f = 2 + 1$, $N_f = 2 + 1 + 1$.

- Beware of partial quenching: sea quarks \neq valence quarks
- Existence of the continuum limit

- Effects of discretization \Rightarrow **BEWARE OF HEAVY QUARKS**
- **2** Finite size effects \Rightarrow **BEWARE OF LIGHT QUARKS**
- **Ohiral extrapolations** \Rightarrow **BEWARE OF THE LOGS**
- ④ Heavy quark treatment ⇒ PERTURBATIVE VS. NON-PERTURBATIVE RENORMALIZATION
- Quenching $\Rightarrow N_f = ?$, BEWARE PARTIAL QUENCHING
- Existence of the continuum limit

- Effects of discretization \Rightarrow **BEWARE OF HEAVY QUARKS**
- 2 Finite size effects \Rightarrow **B**EWARE OF LIGHT QUARKS
- Chiral extrapolations \Rightarrow **BEWARE OF THE LOGS**
- ④ Heavy quark treatment ⇒ PERTURBATIVE VS. NON-PERTURBATIVE RENORMALIZATION
- Quenching $\Rightarrow N_f = ?$, BEWARE PARTIAL QUENCHING
- Existence of the continuum limit Beware of staggered quarks ! Very cheap to simulate statistical error here

statistical error bars BUT

they induce the non-localities \Longrightarrow

- a/ how to know if the continuum theory is indeed QCD?;
- b/ how to quantify those effects and include them in the error-budget?

- Effects of discretization \Rightarrow **BEWARE OF HEAVY QUARKS**
- **2** Finite size effects \Rightarrow **B**EWARE OF LIGHT QUARKS
- Chiral extrapolations \Rightarrow **BEWARE OF THE LOGS**
- ④ Heavy quark treatment ⇒ PERTURBATIVE VS. NON-PERTURBATIVE RENORMALIZATION
- Quenching $\Rightarrow N_f = ?$, BEWARE PARTIAL QUENCHING
- Staggered QUARKS?
 Staggered QUARKS?

Outline

Lattice calculations: sources of systematic errors

$A B_{(s)}$ decays

⇒ Newest unquenched results

Staggered+Fermilab strategy (FNAL 2008) - PRELIMINARY

 $f_D = 207(11) \text{ MeV}$, $f_{D_s} = 249(11) \text{ MeV}$, $f_{D_s}/f_D = 1.20(3)$

Staggered+HiSQ (HPQCD 2008)

 $f_D = 208(4) \text{ MeV}$, $f_{D_s} = 241(3) \text{ MeV}$, $f_{D_s}/f_D = 1.16(1)$

Twisted mass QCD (ETMC 2008) - PRELIMINARY

 $f_D = 197(7)(12) \text{ MeV}$, $f_{D_s} = 244(4)(11) \text{ MeV}$, $f_{D_s}/f_D = 1.24(4)$

Wilson improved (Orsay 2008 - PRELIMINARY)

$$f_D = 199(23) \,\,{
m MeV}$$

⇒ Newest unquenched results

Staggered+Fermilab strategy (FNAL 2008) - PRELIMINARY

 $f_D = 207(11) \text{ MeV}$, $f_{D_s} = 249(11) \text{ MeV}$, $f_{D_s}/f_D = 1.20(3)$

Staggered+HiSQ (HPQCD 2008)

 $f_D = 208(4) \text{ MeV}$, $f_{D_s} = 241(3) \text{ MeV}$, $f_{D_s}/f_D = 1.16(1)$

Twisted mass QCD (ETMC 2008) - PRELIMINARY

 $f_D = 197(7)(12) \text{ MeV} , \quad f_{D_S} = 244(4)(11) \text{ MeV} , \quad f_{D_S}/f_D = 1.24(4)$

Wilson improved (Orsay 2008 -) - PRELIMINARY

 $f_D = 199(23) \text{ MeV}$

⇒ Newest unquenched results

Staggered+Fermilab strategy (FNAL 2008) - PRELIMINARY

 $f_D = 207(11) \text{ MeV}$, $f_{D_s} = 249(11) \text{ MeV}$, $f_{D_s}/f_D = 1.20(3)$

- FSE and chiral extrapolation: $m_q \ge \frac{m_s}{10}$ and large volumes : OK
- Heavy quark: Effective treatment à la Fermilab: OK
- Quenching: fully unquenched, $N_f = 2 + 1$: OK
- Renormalization: perturbative
- Continuum limit: staggered quarks

⇒ Newest unquenched results

Staggered+Fermilab strategy (FNAL 2008) - PRELIMINARY

 $f_D = 207(11) \text{ MeV}$, $f_{D_s} = 249(11) \text{ MeV}$, $f_{D_s}/f_D = 1.20(3)$

Staggered+HiSQ (HPQCD 2008)

 $f_D = 208(4) \text{ MeV}$, $f_{D_s} = 241(3) \text{ MeV}$, $f_{D_s}/f_D = 1.16(1)$

- 3 Twisted mass QCD (ETMC 2008) PRELIMINARY $f_D = 197(7)(12) \text{ MeV}$, $f_{D_s} = 244(4)(11) \text{ MeV}$, $f_{D_s}/f_D = 1.24(4)$
- Wilson improved (Orsay 2008) PRELIMINARY

 $f_D = 199(23) \text{ MeV}$

- ⇒ Newest unquenched results
 - Staggered+HiSQ (HPQCD 2008)

 $f_D = 208(4) \text{ MeV}$, $f_{D_s} = 241(3) \text{ MeV}$, $f_{D_s}/f_D = 1.16(1)$

- FSE and chiral extrapolation: $m_q \ge \frac{m_s}{10}$ and large volumes : OK
- Heavy quark: fully propagating: OK
- Quenching: partially quenched, $N_f = 2 + 1$, valence quarks \neq sea quarks
- Renormalization: non perturbative : OK
- Continuum limit: staggered quarks

⇒ Newest unquenched results

Staggered+Fermilab strategy (FNAL 2008) - PRELIMINARY

 $f_D = 207(11) \text{ MeV} , \quad f_{D_s} = 249(11) \text{ MeV} , \quad f_{D_s}/f_D = 1.20(3)$

Staggered+HiSQ (HPQCD 2008)

 $f_D = 208(4) \text{ MeV}$, $f_{D_s} = 241(3) \text{ MeV}$, $f_{D_s}/f_D = 1.16(1)$

Twisted mass QCD (ETMC 2008) - PRELIMINARY

 $f_D = 197(7)(12) \text{ MeV}$, $f_{D_s} = 244(4)(11) \text{ MeV}$, $f_{D_s}/f_D = 1.24(4)$

Wilson improved (Orsay 2008) - PRELIMINARY

 $f_D = 199(23) \text{ MeV}$

- ⇒ Newest unquenched results
 - Twisted mass QCD (ETMC 2008) PRELIMINARY

 $f_D = 197(7)(12) \text{ MeV}$, $f_{D_s} = 244(4)(11) \text{ MeV}$, $f_{D_s}/f_D = 1.24(4)$

- FSE and chiral extrapolation: $m_q \geq \frac{m_s}{5}$ and large volumes: OK
- Heavy quark: fully propagating: OK
- Quenching: $N_f = 2$, OK?
- <u>Renormalization</u>: non perturbative : OK BUT non perturbative effects of the twisting need to carefully studied
- Continuum limit: OK

⇒ Newest unquenched results

Staggered+Fermilab strategy (FNAL 2008) - PRELIMINARY

 $f_D = 207(11) \text{ MeV} , \quad f_{D_s} = 249(11) \text{ MeV} , \quad f_{D_s}/f_D = 1.20(3)$

Staggered+HiSQ (HPQCD 2008)

 $f_D = 208(4) \text{ MeV}$, $f_{D_s} = 241(3) \text{ MeV}$, $f_{D_s}/f_D = 1.16(1)$

Twisted mass QCD (ETMC 2008) - PRELIMINARY

 $f_D = 197(7)(12) \text{ MeV}$, $f_{D_s} = 244(4)(11) \text{ MeV}$, $f_{D_s}/f_D = 1.24(4)$

Wilson improved (Orsay 2008) - D. Becirevic and BH -PRELIMINARY

$$f_D = 199(23) \text{ MeV}$$

- \Rightarrow Newest unquenched results
 - Wilson improved (Orsay 2008) D. Becirevic and BH -PRELIMINARY

 $f_D = 199(23) \text{ MeV}$

- FSE and chiral extrapolation: $m_q \geq \frac{m_s}{3}$ and large volumes: OK
- Heavy quark: fully propagating: OK
- Quenching: $N_f = 2$, OK?
- Renormalization: non perturbative : OK
- Continuum limit: OK

∜

Cleanest method

But errors much large wrt other regularizations

Benjamin Haas (LPT)

Issues on chiral extrapolations

Chiral logs and D* decay width

$$f_P \sqrt{m_P}(m_\pi) = \Phi_0 \left[1 - rac{1+3g^2}{\left(4\pi f_0\right)^2} m_\pi^2 \log m_\pi^2 + c_\phi m_\pi^2
ight]$$

$$\Gamma(D^{*+} o D^0 \pi^+) = rac{g^2}{6\pi f_\pi^2} |ec{q}|^3$$

Wilson improved (Orsay 2008)- PRELIMINARY

$$g_c^{N_f=2} = 0.60(3)$$

Can $\Gamma(D^{*+} o D^0 \pi^+)$ be measured experimentally ?

Benjamin Haas (LPT)

SuperB Workshop

Agreement with experiment

How to compare with experiment?

Assuming

- G_f FROM μ LIFETIME
- $V_{cd} = V_{us}$ and $V_{cs} = V_{ud}$ from CKM unitarity

Benjamin Haas (LPT)

Agreement with experiment

How to compare with experiment?

Assuming

- G_{f} FROM μ LIFETIME
- $V_{cd} = V_{us}$ and $V_{cs} = V_{ud}$ from CKM unitarity

Benjamin Haas (LPT)

Outline

Lattice calculations: sources of systematic errors

3 D_(s) Decays

Staggered+Fermilab strategy (FNAL 2008) - PRELIMINARY

 $f_B = 195(11) \text{ MeV}$, $f_{B_s} = 243(11) \text{ MeV}$, $f_{B_s}/f_B = 1.25(4)$

Staggered+NRQCD (HPQCD 2005)

 $f_B = 216(22) \text{ MeV}$, $f_{B_s} = 260(26) \text{ MeV}$, $f_{B_s}/f_B = 1.20(3)$

Quenched QCD - (Alpha 2008) - CLEAN

$$f_{B_s}^{N_f=0} = 193(7) \text{ MeV} \; ,$$

Staggered+Fermilab strategy (FNAL 2008) - PRELIMINARY

 $f_B = 195(11) \text{ MeV}$, $f_{B_s} = 243(11) \text{ MeV}$, $f_{B_s}/f_B = 1.25(4)$

2 Staggered+NRQCD (HPQCD 2005)

 $f_B = 216(22) \text{ MeV}$, $f_{B_s} = 260(26) \text{ MeV}$, $f_{B_s}/f_B = 1.20(3)$

Quenched QCD - (Alpha 2008) - CLEAN

$$f_{B_s}^{N_f=0} = 193(7) \text{ MeV} \; ,$$

Staggered+Fermilab strategy (FNAL 2008) - PRELIMINARY

 $f_B = 195(11) \text{ MeV}$, $f_{B_s} = 243(11) \text{ MeV}$, $f_{B_s}/f_B = 1.25(4)$

- Quenching: $N_f = 2 + 1$, OK
- Renormalization: Perturbative
- Continuum limit: Staggered quarks

Staggered+Fermilab strategy (FNAL 2008) - PRELIMINARY

 $f_B = 195(11) \text{ MeV}$, $f_{B_s} = 243(11) \text{ MeV}$, $f_{B_s}/f_B = 1.25(4)$

Staggered+NRQCD (HPQCD 2005)

$$f_B = 216(22) \text{ MeV}$$
, $f_{B_s} = 260(26) \text{ MeV}$, $f_{B_s}/f_B = 1.20(3)$

Quenched QCD - (Alpha 2008) - CLEAN

$$f_{B_s}^{N_f=0} = 193(7) \text{ MeV} \; ,$$

Staggered+NRQCD (HPQCD 2005)

$$f_B = 216(22) \text{ MeV}$$
, $f_{B_s} = 260(26) \text{ MeV}$, $f_{B_s}/f_B = 1.20(3)$

- Quenching: $N_f = 2 + 1$, OK
- Renormalization: perturbative
- Continuum limit: Staggered quarks

Staggered+Fermilab strategy (FNAL 2008) - PRELIMINARY

 $f_B = 195(11) \text{ MeV}$, $f_{B_s} = 243(11) \text{ MeV}$, $f_{B_s}/f_B = 1.25(4)$

Staggered+NRQCD (HPQCD 2005)

 $f_B = 216(22) \text{ MeV}$, $f_{B_s} = 260(26) \text{ MeV}$, $f_{B_s}/f_B = 1.20(3)$

Quenched QCD - (Alpha 2008) - CLEAN

$$f_{B_s}^{
m N_f=0}=$$
 193(7) MeV ,

Quenched QCD - (Alpha 2008) - CLEAN

$$f_{B_s}^{N_f=0} = 193(7) \text{ MeV} \; ,$$

- Quenching: $N_f = 0$
- <u>Renormalization</u>: non perturbative:
 - First step: f_P at $m_Q = \infty$ non perturbative renormalization of HQET
 - 2 Second step: f_P around $m_Q \approx m_c$ non perturbative renormalization of QCD
 - 3 Interpolation in $1/m_Q$ to B_s -meson

Quenched QCD - (Alpha 2008) - CLEAN

 $f_{B_s}^{N_f=0} = 193(7) \text{ MeV}$,

[arXiv:0710.2201]

a/
$$\Phi = f_P \sqrt{m_P}$$

b/ $r_o = 0.5 \text{ fm}$

c/ C_{PS} is a matching coefficient

Summary and outlook

Precision tests in the leptonic decays require

- Flavor factory at high accuracy
- Lattice calculation at a similar accuracy

On the lattice side, beware of

- Correctness of the action
- Renormalization
- Discretization errors
- Correct chiral extrapolations

On the experimental side

- Need of high statistic events : helicity suppression