l atest results from NFMM-3 and status of SuperNEMO

Alberto Remoto remoto@in2p3.fr

Laboratoire d'Annecy-le-vieux de Physique des Particules

uperne

collaboration

Monday, 23 March 15

What is on the menu?

- Searching 0vββ decay
- Looking for $\beta\beta$ events with a tracker & calorimeter
- Recent results from NEMO-3
- Toward the new generation with SuperNEMO

1936 — E. Majorana proposes a real wave to describe massive & electrically neutral fermion

1957 — B. Pontecorvo set the basis for the neutrino flavour oscillation

Last 20 years: Huge effort to confirm neutrino oscillation and measure parameters

We know a lot about neutrino oscillation but not everything yet: mass hierarchy, $\delta_{CP\!\!,}\,\theta_{23}$ octant

Is the neutrino a Majorana particle?

We know that neutrino is:

- 1) fermion
- 2) electrically neutral

It could be a Majorana particle

3) massive

Search for 0vββ decay is the only practical way to test Dirac/Majorana nature of neutrinos

If Majorana particle exists, there are interesting implications for particle physics:

- Lepton number violation must occur: $v = v^c \rightarrow |\Delta L| = 2$
- GUT, Leptogenesis model, See-Saw mechanism

Double beta decay in a nutshell

$(A, Z) \to (A, Z+2) + 2e^- + 2\bar{\nu}_e$

- 2nd order process allowed in the SM
- Single β decay forbidden (energy & angular momentum)
- 11 isotopes have been experimentally observed undergoing 2vββ decay

$$(T_{1/2}^{2\nu})^{-1} = G_{2\nu}(Q_{\beta\beta}, Z)|M_{2\nu}|^2$$

Neutrino-less double beta decay in a nutshell

 $(A,Z) \rightarrow (A,Z+2) + 2e^{-1}$

- Process forbidden in the SM
- Half-life strongly suppressed

$$(T_{1/2}^{0\nu})^{-1} = G_{0\nu}(Q_{\beta\beta}, Z)|M_{0\nu}|^2\eta^2$$

Few different mechanisms may induce 0vββ

- Light Majorana neutrino exchange
- Right-handed current (V+A), SUSY, Majoron(s), etc.

Different topology in the final state!

Sensitivity to the light Majorana neutrino

Limits from direct $\boldsymbol{\nu}$ mass measurement or cosmology

 $\Sigma m_{\nu} < 0.17 \text{ eV}$ (Planck 2015)

$$(T_{1/2}^{0\nu})^{-1} = G_{0\nu}(Q_{\beta\beta}, Z)|M_{0\nu}|^2 \frac{\langle m_{\beta\beta} \rangle^2}{m_e^2}$$
$$\langle m_{\beta\beta} \rangle = \left| \sum_i U_{ei}^2 m_i \right|$$

Related to:

- 1) neutrino oscillation
- 2) mass hierarchy
- 3) mass scale

3 searches in practice

Few important aspects...

Low energy process ($Q_{\beta\beta} \leq 5$ MeV):

- Natural radioactivity is an issue (²³⁸U, ²³²Th)
- Cosmic muons are an issue

Distinguish 0v from 2v mode \rightarrow irreducible background

Good detector energy resolution

Few available isotopes \rightarrow multiply experimental efforts

Isotope	Q _{ββ} [keV]	Nat. abund. (enrich.) [%]	
⁴⁸ Ca → ⁴⁸ Tl	4270	0.187 (73)	
⁷⁶ Ge → ⁷⁶ Se	2039	7.8 (86)	
⁸² Se → ⁸² Kr	2995	8.7 (97)	
⁹⁶ Zr → ⁹⁶ Mo	3350	2.8 (57)	
¹⁰⁰ Mo → ¹⁰⁰ Ru	3034	9.6 (99)	
$^{110}\text{Pd} \rightarrow ^{110}\text{Cd}$	2018	7.5	
¹¹⁶ Cd → ¹¹⁶ Sn	2802	7.5 (93)	
¹³⁰ Te → ¹³⁰ Xe	2527	34.5 (90)	
¹³⁶ Xe → ¹³⁶ Ba	2480	8.9 (80)	
¹⁵⁰ Nd → ¹⁵⁰ Sm	3367	5.6 (91)	

Distinguish 0v from 2v mode \rightarrow irreducible background

Good detector energy resolution

Few available isotopes \rightarrow multiply experimental efforts

Isotope	Q _{ββ} [keV]	Nat. abund. (enrich.) [%]	
⁴⁸ Ca → ⁴⁸ Tl	4270	0.187 (73)	
⁷⁶ Ge → ⁷⁶ Se	2039	7.8 (86)	
⁸² Se → ⁸² Kr	2995	8.7 (97)	
⁹⁶ Zr → ⁹⁶ Mo	3350	2.8 (57)	
¹⁰⁰ Mo → ¹⁰⁰ Ru	3034	9.6 (99)	
¹¹⁰ Pd → ¹¹⁰ Cd	2018	7.5	
¹¹⁶ Cd → ¹¹⁶ Sn	2802	7.5 (93)	
$^{130}\text{Te} \rightarrow ^{130}\text{Xe}$	2527	34.5 (90)	
¹³⁶ Xe → ¹³⁶ Ba	2480	8.9 (80)	
$^{150}Nd \rightarrow ^{150}Sm$	3367	5.6 (91)	

Which technology?

 $(T_{1/2}^{0\nu})^{-1} = G_{0\nu}(Q_{\beta\beta}, Z) (M_{0\nu})^2 \eta^2$

- Contain nuclear structure effects
- Many approximation methods
- Different among isotopes
- Measuring NME in $2\nu\beta\beta$ does not help

Main limitation in interpreting results & comparing among different isotopes

... but also the axial coupling constant

- g_A is know to be quenched in β and ββ decay
- An effective constant is extracted from experimental measurement
- Quenching factor ~0.8 0.5
- g_A quenched in $0\nu\beta\beta$ as much as in $2\nu\beta\beta$?

g_A appear at the 4th power in T_{1/2} calculation \rightarrow it may impact $\langle m_{\beta\beta} \rangle$ sensitivity up to x6–34

What is the status?

HdM (35.5 kg x y) & IGEX, ⁷⁶Ge

• T^{0v}_{1/2} > 1.9 x 10²⁵ y @ 90% C.L.

HdM claim: $(m_v) = 0.32 + - 0.03 \text{ eV}$

Cuoricino (19.75 kg x y): TeO₂ bolometer • 130 Te: T ${}^{0v}{}_{1/2} > 2.8 \times 10^{24}$ y @ 90% C.L. NEMO3 (34.7 kg x y with Mo): track + calo.

• ¹⁰⁰Mo: $T^{0v}_{1/2} > 1.1 \times 10^{24} \text{ y} @ 90\% \text{ C.L.}$

EXO200 (> 95 kg x y): Liquid Xe TPC Kamland-ZEN (190 kg x y): Liquid Scintillator GERDA Phase 1 (>20 kg x y): Ge diodes

Alberto Remoto

2000

Т

1993

Future projects

5 years time scale:

- M ~ 10 50 kg of ββ isotope
- Background level 10⁻³ cts. /(keV kg y)
- Explore quasi-degenerate region

10 years time scale:

- M ~ 100 kg 1t of ββ isotope
- Background level 10⁻⁴ cts. /(keV kg y)
- Approach Inverse Hierarchy region

Extended R&D: Energy resolution, particle ID, radio-purity

Multi-phase approach: demonstrate scalability and background levels

CUORE, Gerda, Majorana, Lucifer, AMORE, NEXT, COBRA, EXO, SNO+, KamLAND-Zen, CANDLES, SuperNEMO, DCBA, ...

$$T_{1/2}^{0\nu} > \frac{N_A \ln 2}{n_\sigma} \times \frac{\epsilon}{A} \times \sqrt{\frac{M \times t}{B \times \Delta E}}$$

ββ decay experiment combining tracker and calorimetric measurement

Located at the Modane underground laboratory (~4800 m.w.e.)

10 kg of different ββ isotopes taking data from February 2003 to January 2011

sources

60 mg/cm² foils 10 kg of ββ isotopes

tracker

6180 Geiger cells vertex resolution : σ_{xv} ~ 3 mm σ_z ~ 10 mm

calorimeter

1940 optical modules : polystyren scintillators + 3" and 5" PMTs FWHM_E ~ 15% / √E_{MeV} σ_t ~ 250 ps

NEMO-3

Laboratoire Souterain de Modane

- Mainly ¹⁰⁰Mo (7 kg) & ⁸²Se (1 kg) + smaller quantities of others isotopes
- Blank foils to cross-check background measurements (Cu & ^{Nat}Te)

Monday, 23 March 15

Full reconstruction of 2e⁻ kinematics: unique!

 Individual e⁻ energy, arrival time, track curvature, emission vertex and angle

Excellent background rejection

• Identification e^- , e^+ , γ , α , Internal/External Low energy resolution: [14 - 17] % / Sqrt(E)

SOUFCES 60 mg/cm² foils

10 kg of ββ isotopes

tracker

6180 Geiger cells vertex resolution : σ_{xv} ~ 3 mm σ_z ~ 10 mm

calorimeter

1940 optical modules : polystyren scintillators + 3" and 5" PMTs FWHM_E ~ 15% / √E_{MeV} σ_t ~ 250 ps

Sensitivity equivalent to best calorimetric experiment

Selection efficiency for $E_{2e} > 2.0$ MeV is 11.3 % (MC)

NEMO-3: energy calibration

Radioactive sources:

- ²⁰⁷Bi: 482 keV and 976 keV conversion electron
- ${}^{90}\text{Sr} {}^{90}\text{Y}$: β -decay end point $Q_{\beta} = 2280 \text{ keV}$
- ²⁰⁷Bi: 1682 keV conversion electron to test energy scale: 99% PMTs Data/MC < 0.2%

Laser inter-calibration system:

- Gain and time survey twice a day PMTs linearity < 1% for E < 4 MeV
- 82% of PMTs stable < 5% over the whole data taking

NEMO-3: backgrounds

Radio-impurities in material, γ from (n,γ) and μ bremsstrahlung

- γ from ²⁰⁸Tl at 2.6 MeV
- (n,γ) up to 10 MeV

²⁰⁸TI (from ²³²Th) and ²¹⁴Bi (from ²³⁸U) contamination in foil source and ²¹⁴Bi from Rn decay in tracker volume

- ²⁰⁸TI Q_{β} at 5 MeV
- ²¹⁴Bi Q_{β} at 3.27 MeV

NEMO-3: external backgrounds

Take advantage of PID capabilities of NEMO-3: e^- , e^+ , γ , α and TOF measurement

NEMO-3: internal backgrounds

Take advantage of PID capabilities of NEMO-3: e⁻, e⁺, γ, α and TOF measurement

1e⁻ (single β emitters), e⁻N γ (²⁰⁸TI) , e⁻ α (²¹⁴Bi) channels channels

²⁰⁸TI activity checked with ²³²U sources \rightarrow 10% systematics w.r.t. HPGe measurement ²¹⁴Bi activity compared in two different channel \rightarrow e-Ny, e-a: 10% systematics

Background checked in 2e Ny (^{208}TI) and 2e α (^{214}Bi) channels

- ²⁰⁸TI: 7 events, 8.8 expected
- 214 Bi Phase 1: 3 events, 6.5 ± 0.4 expected
 - 214 Bi Phase 2: 3 events, 2.9 ± 0.2 expected

NEMO-3: ²²²Rn background

²²²Rn in the gas of the tracking chamber monitored through the 1e1α channel

Strongly suppressed upon flushing Rn-free air into a dedicated tent surrounding the detector

Phase 1: 37.7±0.1 mBq/m³

Phase 2: 6.46±0.02 mBq/m³

NEMO-3: hot spots identification

Vertex reconstruction capabilities: $\sigma_z = 0.6$ cm and $\sigma_r = 1.0$ cm

Able to reduce backgrounds removing activity hot spots from the foils surface

Alberto Remoto

Monday, 23 March 15

NEMO-3: ¹⁰⁰Mo $2\nu\beta\beta$ results

- About 700 000 2vββ events
- Detection efficiency = $4.3 \pm 0.7 \%$
- Signal over Background ratio = 76

```
T^{2v}_{1/2} = [7.16 \pm 0.01 \text{ (stat)} \pm 0.54 \text{ (syst)}] \times 10^{18} \text{ y}
```

Consistent with previously published [PRL 95 (2005) 182302]

[Phys. Rev. D. 89.111101 (2014)]

Detailed paper to be published in the following weeks

NEMO-3: ¹⁰⁰Mo $0\nu\beta\beta$ result

- No event excess after 34.3 kg×y exposure
- $T^{0v}_{1/2} > 1.1 \times 10^{24} \text{ y} (90 \% \text{ C.L.}) \rightarrow \langle m_v \rangle < 0.3 0.9 \text{ eV}$

Expected background in [2.8 - 3.2] MeV

2νββ	8.45 ± 0.05
²¹⁴ Bi from radon	5.2 ± 0.5
²⁰⁸ TI internal	3.3 ± 0.3
²¹⁴ Bi internal	1.0 ± 0.1
External	< 0.2
Total	18.0 ± 0.3
Data	15

Total background: 1.3×10⁻³cts / (keV×kg×y)

NEMO-3: ¹⁰⁰Mo $0\nu\beta\beta$ result

• $T^{0v}_{1/2}$ limit set with a modified frequentist analysis

Account for statistical and systematic uncertainties

• Using full information in $E_{Tot} = [2.0; 3.2]$ MeV

Detection efficiency: 11.3 ± 0.8 %

[Phys. Rev. D. 89.111101 (2014)]

Detailed paper to be published in the following weeks

Systematics

2vββ events in window	0.7%
0vββ detection efficinecy	7.0%
²¹⁴ Bi contamination	10.0%
²⁰⁸ TI contamination	10.0%

HP/Np 250	$= \begin{array}{c} 2\beta\chi\chi\\ \mathfrak{y}=^{-7}2\beta^{-2}\mu - 2\beta\chi\chi\end{array}$	2BV 2B	Ον
	$n=5 2\beta\chi$	n=1	
200			
150			
100			
100	$ / / \rangle$		
50			
50	$[//] \land \land \land$	1911 1911 1911 1911 1911 1911 1911 191	
0			
Ū	0 500 1000 1500 2000	2500 300	00
		Eneray, K	e٧

[N.I.M. A 434 (1999) 435]

and their correlation

Limits at 90%	C.L. in	units	of 10 ²⁴ y
---------------	---------	-------	-----------------------

Process	Stat. Only	Stat. + Syst.	Expected
Mass mechanism	1.1	1.1	1.0 [0.7; 1.4]
RH Current $\langle \lambda \rangle$ (q _{r.h.} – I _{r.h.})	0.7	0.6	0.5 [0.4; 0.8]
RH Current $\langle \eta \rangle$ (q _{I.h.} – I _{r.h.})	1.0	1.0	0.9 [0.6; 1.3]
Majoron (n=1)	0.050	0.044	0.039 [0.027; 0.059]

NEMO-3: other results

Other isotopes: only partial exposure has been published

Analysis of whole statistics ongoing (⁸²Se, ⁴⁸Ca, ⁹⁶Zr, ¹¹⁶Cd, ¹⁵⁰Nd)...stay tuned!

¹⁰⁰Mo 0vββ decay to the ¹⁰⁰Ru excited states [Nuclear Physics A781 (2007) 209-226]

NEMO-3: high energy background

No events in 100 Mo foils after 34.3 kg×y > 3.2 MeV

No events in Cu & Te foils after 13.5 kg×y > 3.1 MeV

Promising background free technique for high Q_{ββ} isotopes ⁴⁸Ca (4.272 MeV), ¹⁵⁰Nd (3.368 MeV) or ⁹⁶Zr (3.350 MeV)

Alberto Remoto

Monday, 23 March 15

Monday, 23 March 15

[Eur. Phys. J. C70: 927-943,2010]

SuperNEMO: toward the new generation

Extrapolate a well known technique:

- 100 kg of ββ emitter in 20 detection module
- Approach Inverted Hierarchy region

	NEMO-3	SuperNEMO
Efficiency	18%	~30%
Isotope	7 kg ¹⁰⁰ Mo	~100 kg ⁸² Se (¹⁵⁰ Nd, ⁴⁸ Ca)
Exposure	35 kg y	~500 kg y
Energy res.	8% @ 3 MeV	4% @ 3 MeV
²⁰⁸ TI (source)	~100 µBq/kg	< 2 µBq/kg
²¹⁴ Bi (source)	~ 300 µBq/kg	< 10 µBq/kg
Rn (in tracker)	5 mBq/m ³	0.15 mBq/m ³
T _{1/2}	10 ²⁴ y	10 ²⁶ y
$\langle m_v \rangle$	0.3 - 0.9 eV	0.04 - 0.1 eV

A challenge in many aspects:

- R&D program in the past years almost completed!
- Next step: Demonstrator module

[Eur. Phys. J. C70: 927-943,2010]

SuperNEMO: the demonstrator module

One SuperNEMO module \rightarrow 7 kg ⁸²Se running ~2.5 y

- To be installed @ LSM (replacing NEMO-3)
- Match SuperNEMO requirements

Reach NEMO-3 (¹⁰⁰Mo) sensitivity in 4.5 months

• Sensitivity: $\langle m_v \rangle \sim 0.20 - 0.40 \text{ eV}$

Schedule:

- Calorimeter & tracker under production
- Installation starting in 2015
- Commissioning & First data by 2016

SuperNEMO: the calorimeter

- 5" and 8" high quantum efficiency PMT directly coupled to a scintillator block with optimised geometry
- Energy resolution: 7.2 % FWHM @ 1 MeV
- Electronics, optical modules, shield, mechanical structure under production

SuperNEMO: the tracker

- 2034 Geiger cells in a Rn-tight chamber surrounded by optical modules for veto
- Drift cells under production whit automatic wiring robot
- Tracker assembled in 1/4 @ MSSL (UK) then moved to LSM for integration
- Commissioning of C0 ongoing at sea level, C1 under construction

SuperNEMO: the source foil

- About 37 foils installed on the source frame in the detector center
- ⁸²Se powder mixed with PVA glue + mylar or nylon mechanical support
- Limits on foil contamination in ²⁰⁸TI (2 μBq/kg) and ²¹⁴Bi (10 μBq/kg) are challenging
- Purification technique under investigation: chemical chromatography, distillation, etc.
- LAPP is in charge for the production of 1/2 of the source for the Demonstrator

SuperNEMO: radio-purity measurements

Detector radio-purity budget:

Materials validation with HPGe detectors (sensitivity ~ mBq)

Source foils:

- HPGe not sensitive enough for SuperNEMO requirement: dedicated setup @ LSC (Canfranc) BiPo
- Detecting delayed $\beta \alpha$ coincidence from Bi Po chain
- First two ⁸²Se foils currently under measurement

Monday, 23 March 15

SuperNEMO: Radon measurements

- The Rn gas in the tracker volume was the dominant background in NEMO-3
- Reduce Rn contamination to 0.15 mBq/m³
- Control the Radon emanation of the materials
- Radon purification/absorption with dedicated setup
- Preliminary radon emanation of $C0 = 0.236 \pm 0.035 \text{ mBq/m}^3$ limit is close!

Esher - Ascending and descending (1960)

Summany

Alberto Remoto

Monday, 23 March 15

Summary & conclusions

- Unique: allowing direct reconstruction of the 2e⁻
- Full signature of 0vββ events and powerful background rejection
- Background-free technique for high energy Q_{ββ} isotopes

Latest NEMO-3 results

technique

Tracking + Calo.

- Total ¹⁰⁰Mo exposure of 34.3 kg×y shows no event excess
- T^{0v}_{1/2} > 1.1×10²⁴ y $\rightarrow \langle m_v \rangle < 0.3 0.9 \text{ eV} @ (90 \% \text{ C.L.})$
- Other isotopes: re-analysis of full statistics ongoing
- Under construction: commissioning by 2016
- SuperNEMO demonstrator
- Foresee to run for 2.5 years with 7 kg of ⁸²Se
- T^{0v}_{1/2} > $6.5 \times 10^{24} \text{ y} \rightarrow \langle m_v \rangle < 0.20 0.40 \text{ eV} @ (90 \% \text{ C.L.})$
- Future: Full SuperNEMO
- 20 demonstrator-like modules: 100 kg of ⁸²Se for 5 years
- T^{0v}_{1/2} > 1 × 10²⁶ y $\rightarrow \langle m_v \rangle < 0.04 0.10 \text{ eV} @ (90 \% \text{ C.L.})$
- ⁴⁸Ca,¹⁵⁰Nd or ⁹⁶Zr are also possible candidates

Alberto Remoto

Monday, 23 March 15

Backup

Which isotope?

	Isotope	Q _{ββ} [keV]	Nat. abund. (enrich.) [%]	G _{0v} [10 ⁻¹⁴ y ⁻¹] ^(*)	T ^{2v} 1/2 [10 ¹⁹ y]	Experiment
	⁴⁸ Ca	4270	0.187 (73)	6	4.2 ^{+2.1} -1.0	NEMO3
	⁷⁶ Ge	2039	7.8 (86)	1	150±10	GERDA
	⁸² Se	2995	8.7 (97)	3	9.0±0.7	NEMO3
	⁹⁶ Zr	3350	2.8 (57)	6	2.0±0.3	NEMO3
11 7/1	¹⁰⁰ Mo	3034	9.6 (99)	4	0.71±0.04	NEMO3
ר מו ק	¹¹⁶ Cd	2802	7.5 (93)	5	3.0±0.2	NEMO3
	¹³⁰ Te	2527	34.5 (90)	4	70±10	NEMO3
	¹³⁶ Xe	2480	8.9 (80)	4	238±14	KamlandZEN
130rCP	¹⁵⁰ Nd	3367	5.6 (91)	19	0.78±0.7	NEMO3

Alberto Remoto

2

What is the status?

Light Majorana neutrino exchange		Rig e 🔪 cui	Right handedSUSY: neutralino orcurrentgluino exchange			Majoron emission	
					^		
Isotope	Exposure (kg•y)	Half life (10 ²⁵ y) published	、 〈m _v 〉(eV) published	〈λ〉(10 ⁻⁶) published	<η> (10 ⁻⁸) published	λ' ₁₁₁ /f (10 ⁻²) published	〈g _{ee} 〉(10 ⁻⁵) published
¹⁰⁰ Mo ^[1] (NEMO-3)	34.7	0.1	0.33 - 0.87	0.9 - 1.3	0.5 - 0.8	4.4 - 6.0	2 - 5
¹³⁰ Te ^{[2][3]} (CUORICINO)	19.75	0.3	0.31 - 0.71	1.6 - 2.4	0.9 - 5.3		17 - 33
¹³⁶ Xe ^{[4][5]} (KamLAND-Zen)	89.5	1.9	0.14 - 0.34				
¹³⁶ Xe ^[9] (KamLAND-Zen)	109.4 + 89.5	2.6	0.14 - 0.28				
¹³⁶ Xe ^[6] (EXO-200)	99.8	1.1	0.19 - 0.45				
⁷⁶ Ge ^{[7][8]} (GERDA)	21.6	2.1	0.2 - 0.4				3.4 - 8.7
⁷⁶ Ge ^[9] (HdM)	35.5	1.9	0.4	1.1	0.6		8.1

NEMO-3: $2\nu\beta\beta$ of ¹⁰⁰Mo SSD/HSD

If the intermediate nucleus is a $J^{\pi}=1+$ state, the NME could be dominated by GT transitions through this state.

If the SSD hypothesis is confirmed

- $2\nu\beta\beta$ half-life could be determined from single- β and electron capture (EC) measurements.
- simplification in the theoretical description of the intermediate nucleus

The BB source foil

Alberto Remoto

Monday, 23 March 15

Foil source design

A. Remoto, D. Duchesneau, J.M. Dubois, A. Jeremie, T. Le Noblet

Se + PVA bulk

The $\beta\beta$ emitter is shaped in thin foil (150–200 um) mixing ⁸²Se powder with PVA glue — very fragile!

An embedded mechanical support is necessary to provide mechanical strength over the foil length

Different designs of the mechanical support are under consideration:

- NEMO-3 like design (ITEP): ⁸²Se+PVA within mylar backing film
- New design (LAPP): ⁸²Se+PVA with light nylon fabric support
- New design (LAPP): standalone ⁸²Se+PVA foil with clean mylar film welded to offer a protective layer

Foil source production

A. Remoto, D. Duchesneau, J.M. Dubois, A. Jeremie, T. Le Noblet

- Foil production protocol is defined. All the tools are ready! Improving the technique with practice...
- All materials to be used in foil production have been defined.
- Radio-purity measurements have been performed (collaboration with LSM, LAL and LSC - Canfranc)

Where we were last year

Where we are now

T. Le Noblet, A. Remoto

- Study ββ0v sensitivity w.r.t. foil design
- Check the foil design doesn't alter physics performance and results
- Generating signal, background and detector response

reco'ed e- tracks

- ε : Signal selection efficiency
- S(b) : Average upper limit on the number of signal events (Feldman & Cousins)

Alberto Remoto

dN/dE [A.U.]

T. Le Noblet, A. Remoto

- Study ββ0v sensitivity w.r.t. foil design
- Check the foil design doesn't alter physics performance and results
- Generating signal, background and detector response

$$T_{1/2}^{0
u} > rac{N_A \ln 2}{W} imes rac{\epsilon imes M imes T}{\mathcal{S}(b)}$$

- ϵ : Signal selection efficiency
- S(b) : Average upper limit on the number of signal events (Feldman & Cousins)
- Optimise R.O.I w.r.t. s/b ratio

Alberto Remoto

dN/dE [A.U.]

T. Le Noblet, A. Remoto

- Study ββ0v sensitivity w.r.t. foil design
- Check the foil design doesn't alter physics performance and results
- Generating signal, background and detector response

• Optimise R.O.I w.r.t. s/b ratio

T. Le Noblet, A. Remoto

- Study ββ0v sensitivity w.r.t. foil design
- Check the foil design doesn't alter physics performance and results
- Generating signal, background and detector response

• Optimise R.O.I w.r.t. s/b ratio

- Compare different design of the foil
- Recent radio-purity measurements are taken into account
- Currently limited by the PVA glue (x5 times the limit in ²¹⁴Bi)
- PVA purification procedure under R&D