LHCb STATUS AND EARLY PHYSICS PROSPECTS

Monica Pepe-Altarelli (CERN)

on behalf of the LHCb Collaboration

Rencontres Physique Vallée d'Aoste 2009

Introduction to the LHCb Experiment
Detector Overview and Performance
Commissioning
Early Physics at LHCb
Conclusions

- LHCb: dedicated B physics experiment at LHC
- Enormous progress in recent years from the B factories and Tevatron
 What remains to be done at the LHC?
- Focus has changed: no longer seeking to verify the CKM picture, instead searching for signs of New Physics beyond the Standard Model in the flavour sector
- $b \rightarrow s$ transitions: still limited knowledge, space for NP effects
- Flavour physics observables have sensitivity to new particles at high mass scales via their virtual effects in loop diagrams:

Advantages of beauty physics at hadron colliders:

- High value of beauty cross section expected at 14 TeV:
 - $\sigma_{bb} \sim 500 \ \mu b$ (e+e- cross section at Y(4s) is 1 nb)
- Access to all b-hadrons: B[±], B⁰, B_s, B_c, b-baryons
- The challenges
 - Multiplicity of tracks (~30 tracks per rapidity unit)
 - Rate of background events: $\sigma_{inel} \sim 80 \text{ mb}$
- □ LHCb running conditions:
 - L limited to ~2 10³² cm⁻² s⁻¹ by not focusing the beam as much as ATLAS and CMS
 - Maximize the probability of single interaction per bunch crossing
 - At LHC design luminosity pile-up of >20 pp interactions/bunch crossing
 - LHCb L reached soon after start-up
 - 2fb⁻¹ per nominal year (10⁷s), ~ 10¹² bb pairs produced per year

The LHCb Acceptance

- Detector designed to maximize B acceptance (against cost)
- Forward spectrometer 1.9<η<4.9</p>
 - b-hadrons produced at low angle
 - Single arm OK as b quarks are produced in same fwd or backward cone
- Rely on much softer, lower P_T triggers, efficient also for purely hadronic decays
- □ ATLAS/CMS: |η|<2.5
 - \blacksquare Will do B-physics using high $P_{T}~\mu$ triggers, mostly with modes involving di- μ
 - Purely hadronic modes triggered by tagging μ.

□ Key features:

- Highly efficient trigger for both hadronic and leptonic final states to enable high statistics data collection
- Vertexing for secondary vertex identification
- Mass resolution to reduce background

Detector Performances: Tracking

Expected tracking performances:

- Efficiency > 95% for tracks from B decays crossing whole detector
- δp/p, depending on p: 0.3% ÷ 0.5%
- Impact parameter resolution : $\sigma_{IP} \sim 30 \ \mu m$
- Proper time resolution: ~ 40 fs
- B Mass resolution: 15÷20 MeV/c2

Mass resolution ~ 20 MeV

Two RICH detectors with 3 radiators to cover range 2 < p <100 GeV :

RICH1 Aerogel (2-10 GeV), C4F10 (10-60 GeV)

RICH2 CF4 (16-100 GeV)

 $\pi\pi$ invariant mass $K\pi$ invariant mass

LHCb Trigger

Trigger is crucial as σ_{bb} is less than 1% of total inelastic cross section and B decays of interest typically have BR < 10⁻⁵

Hardware level (L0)

D Search for high- $p_T \mu$, e, γ , hadron candidates

Software level (High Level Trigger, HLT)

■ Farm with 𝔅(2000) multi-processor boxes

- HLT1: Confirm L0 candidate with more complete info, add impact parameter and lifetime cuts
- HLT2: global event reconstruction + selections

	ε(L0)	ε(HLT1)	ε(HLT2)
Electromagnetic	70 %	> ~80 %	> ~90 %
Hadronic	50 %		
Muon	90 %		

Commissioning: Cosmics

- □ LHCb geometry NOT well suited for cosmics... A challenge!
- Rate of 'horizontal' cosmics well below 1 Hz, still very useful
- □ Collected a total of ~ 1.1Million triggers

LHCD **Cosmic Alignment in Time of Muon Stations Backward tracks** Forward tracks aligned shifted in time Entries Mean RMS Underflow Overflow Integral 880 -11.56 15.94 0 0 880 Fw track Hit raw time M2 Entries Mean RMS Underflow Overflow 4.6 4.1 Integral M2 -50 50 Bw track Hit raw time M3 Entries 1154 Fw track Hit raw time M3 Entries 1444 -0.8295 Mean RMS -21.14 15.73 Mean 8 2 8 9 4 9 2 2 RMS 12.1 Underflow Underflow Overflow Integral Overflow 0 1444 **M3** Integral 1154 ľъл Entries Mean RMS Underflow Overflow Integral 1434 1.59 10.92 0 0 1434 1151 -32.59 13.3 0 Fw track Hit raw time M4 Bw track Hit raw time M4 Entries Mean RMS 120 160 E **** Underflow Overflow 0 1151 M4 Bw track Hit raw time M5 Fw track Hit raw time M5 696 -39.05 13.07 Entries Entries 900 1.319 11.54 Mean Mean s s s s nuluuluuluu RMS RMS Underflow 0 0 696 Underflow 0 Overflow ō Integral 900 Integral M5

Expected arrival time wrt reference(ns)

Beam 2 dumped on injection line beam stopper (TED)

- Located 340m before LHCb along beam 2
- Wrong direction for LHCb
- High flux, centre of shower O(10) particles/cm2

Circulating beam 1

- Right direction for LHCb
- Events taken during beam1 circulation look either like low multiplicity events or splashes

LHCb Commissioning 10.9. 2008 11:25:26 -25ns

Readout of consecutive crossings for a single trigger

VELO Space Alignment (with tracks from Beam 2 dumped on injection line beam stopper)

Alignment precision

difference of two "alignment runs":

- $\blacksquare~5~\mu m$ for X and Y translation
- **□** 200 µrad for Z rotation

difference between survey and software alignment:

□ 10 µm placement accuracy

LHCD THCD TT and IT Space Alignment (with tracks from Beam 2 dumped on injection line beam stopper)

LHCb While waiting for the LHC...

New LHC Restart Schedule (following Chamonix Workshop)

- **D** First beams in LHC at end of September, with collisions following in late October
- Beam physics running during winter 2009-2010
- Long running period of ~11 months is possible
- Intermediate 10 terms in the second secon

□ LHCb:

- Detector consolidation
- **D** Adding 350 farm computing nodes to the current 200 in place
 - Farm nodes for computing power will be added as needed but infrastructure for up to 2000 in place
- **D** Installation of last Muon station in between RICH and the Calorimeters (M1)
- **D** Improving
 - HV control
 - Data Monitoring

Run detector with two shifters

- Automating global control
- **G** Full Experiment System Test (FEST09)

- a lot of simulated events and one powerful computer
 - HARDWARE+L0+READOUT BOARD → MonteCarlo & Event Injector
- Be ready to receive, process and analyze 7 million events in the first hour of collisions!
 - Exercise Online and Offline systems, Trigger, Monitoring, Data Quality checking and prompt (Online) reconstruction
 - Answer operational questions: e.g. "What is the best way to update alignment / calibration constants?"
 - FEST infrastructure can be used later for dry-run tests of various components of the system

- Potentially sensitive to NP discovery
- □ In CP violation:
 - B_s-B_s mixing phase
 - **\square** weak phase γ in trees
 - **\square** weak phase γ in loops
- □ In rare decays:
 - **□ BR** (**B**_s→ μμ)
 - **\Box** forward-backward asymmetry in B \rightarrow K^{*}µµ
 - polarization of photon in radiative penguin decays

Very First Measurements

(some examples)

Large Minimum Bias data samples collected as soon as the LHC delivers p-p collisions: 10⁸ O(day) @ 2kHZ

- plenty of K_s , $\Lambda \rightarrow$ measure differential production distributions (η , p_T)
- Clean and unbiased samples for PID studies
- **D** p_T cut on single muon \rightarrow expect ~610⁵ J/ $\psi \rightarrow \mu \mu$ with 1 pb⁻¹ (10 TeV)
 - Reconstruct J/ $\psi \rightarrow \mu \mu$, disentangle fraction of prompt and detached J/ ψ s
 - Study proper time resolution with prompt component
 - Measure prompt J/ψ and bb cross section in a region not accessible to other collider experiments
- With Full Trigger
 - Exclusive B and D decays

Here ϕ_s measurements from $B_s \rightarrow J/\psi \phi$

- □ The measure of B_s - B_s mixing phase ϕ_s in B_s - \rightarrow J/ ψ (µµ) ϕ is sensitive to NP effects in mixing
 - The phase arises from the interference between B decays with and without mixing

•
$$\phi_s = \phi_{s(SM)} + \phi_{s(NP)}$$

• $\phi_{s(SM)} = -2\beta_s = -2\lambda^2\eta \sim -0.04$
• Tevatron: ~2.2 σ away from SM
(central experimental value -0.77)

Key ingredients for sensitivity:

- Large signal yield
- Excellent proper time resolution to resolve fast B_s oscillations: ~40 fs
- Good tagging of initial B_s flavour : ~6%
- Good control of proper time and angular acceptances

Physics reach for ϕ_s measurement as function of integrated luminosity (and comparison with Tevatron)

→ With ~0.3 fb⁻¹ LHCb should improve on expected Tevatron limit

→ Collect ~2 fb⁻¹ for 3σ observation of SM value

- □ Small BR in SM: $(3.35 \pm 0.32) \times 10^{-9}$
 - sensitive to NP
 - could be strongly enhanced in SUSY
 - In MSSM scales like ~tan⁶β
 - Current limit from CDF: < 47 ×10⁻⁹
 - Expected with 9 fb⁻¹: < 20× 10⁻⁹
 - ~5 times higher than SM!

□ LHCb:

- high stat. & high trigger efficiency for signal
- main issue is background rejection
- dominated by $B \rightarrow \mu^+ X$, $B \rightarrow \mu^- X$ decays
- Exploits good mass resolution and vertexing, and good particle ID
- Use of control channels to minimize dependence on MC simulation

LHCD Physics reach for BR($B_s^0 \rightarrow \mu^+ \mu^-$) as function of integrated luminosity (and comparison with Tevatron)

→ With ~0.3 fb⁻¹ LHCb should improve on expected Tevatron limit with 9 fb⁻¹

→ Collect ~3 fb⁻¹ for 3σ observation of SM value

Conclusions

- LHCb is ready to take data
- Cosmics and first LHC-induced tracks were very useful to commission the detector
- Large Minimum Bias data samples, will be collected in the forward region at a rate of 2kHz, as soon as the LHC delivers pp collisions
- A few observables sensitive to NP should already be accessible at the end of the 1st year of data taking

Several measurements expected to remain statistically limited after 10fb⁻¹

- Increase Lumi by factor 10
 - 5 years at 2 10³³ cm⁻² sec⁻¹ → 100 fb⁻¹
- Improve Trigger Efficiency
- □ Three main issues to be addressed:
 - **D** Trigger bottleneck (1 MHz max. output rate of L0 hardware):
 - Need 40 MHz readout of all detector sub-systems + full trigger on CPU farm to get improved hadron trigger (×2) with yield proportional to luminosity
 - Event building & CPU power OK, but implies replacement of all FE electronics !
 - Radiation damage
 - Need to replace VELO, inner parts of Si tracker, inner part of calorimeter, …
 - Detector occupancy (increased due to pileup ~4 int./crossing + spillover)
 - Need replacement/solution for inner part of Outer Tracker (straws)
 - Need new reconstruction algorithms in high occupancy environment

Sensitivities for 100 fb⁻¹

Observable	Sensitivity
$S(B_s \to \phi \phi)$	0.01 - 0.02
$S(B_d \rightarrow \phi K_S^0)$	0.025 - 0.035
$\phi_s \left(J/\psi \phi \right)$	0.003
$\sin(2\beta) \left(J/\psi K_S^0\right)$	0.003 - 0.010
$\gamma (B \rightarrow D^{(*)}K^{(*)})$	$< 1^{\circ}$
$\gamma \ (B_s \to D_s K)$	$1-2^{\circ}$
$\mathcal{B}(B_s \to \mu^+ \mu^-)$	5 - 10%
$\mathcal{B}(B_d \to \mu^+ \mu^-)$	3σ
$A_T^{(2)}(B \to K^{*0}\mu^+\mu^-)$	0.05 - 0.06
$A_{\rm FB}(B \rightarrow K^{*0} \mu^+ \mu^-) s_0$	$0.07 \mathrm{GeV^2}$
$S(B_s \to \phi \gamma)$	0.016 - 0.025
$A^{\Delta\Gamma_s}(B_s \to \phi\gamma)$	0.030 - 0.050
charm x'^2	$2 imes 10^{-5}$
mixing y'	$2.8 imes10^{-4}$
$CP y_{CP}$	$1.5 imes10^{-4}$

Also studying Lepton Flavour Violation in $\tau \rightarrow \mu \mu \mu$