Measurements of CKM parameters at the B factories

Gabriella Sciolla (MIT)

Outline:

- CP violation in the Standard Model
 - The CKM mechanism
- The beauty of the Unitarity Triangle
 - Measurements of angles
 - β, α, γ
 - Measurements of sides
 - V_{ub} , V_{cb} , V_{td}/V_{ts}
- Conclusion

CPV and the Unitarity Triangle

- 1964: CPV observed by Fitch and Cronin in K_L decays
- 1973: Kobayashi and Maskawa explained CP violation in SM introducing a 3x3 quark mixing matrix with an imaginary phase

NB: UT constrained by 2 quantities

 \rightarrow any additional measurement: test CKM/probe for New Physics Two approaches:

- 1) Over constrain the triangle (e.g.: sides vs angles)
- 2) Independent measurements of the same quantity

The Unitarity Triangle in 1999

3 ways to look for New Physics:

- a) Sides vs. angles
- b) Angle vs. angle
- c) Side vs. side

Gabriella Sciolla (MIT)

Some measurement of the sides, but no angles!

First goal of the B factories: measure the angles of UT

Time dependent CP asymmetry:

CPV in B⁰ decays: $sin2\beta$

When only one diagram contributes to the decay $B \rightarrow f_{CP}$

$$A_{CP}(t) = \frac{N(\overline{B}^{0}(t) \rightarrow f_{CP}) - N(B^{0}(t) \rightarrow f_{CP})}{N(\overline{B}^{0}(t) \rightarrow f_{CP}) + N(B^{0}(t) \rightarrow f_{CP})} = \pm \text{Im } \lambda \text{ sin}(\Delta mt)$$
For some modes, Im λ is directly and
simply related to the angles of the UT
Example:
B⁰ \rightarrow J/ Ψ K_S: the "golden mode"
• Theoretically clean
• Experimentally clean
• Relatively large BF (~10⁻⁴)

$$\lambda = \left(\frac{V_{tb}^*V_{d}}{V_{tb}V_{td}^*}\right)_{B_{max}^0} \left(\frac{V_{cs}^*V_{cb}}{V_{cs}V_{cb}^*}\right)_{decay} \left(\frac{V_{cd}^*V_{cs}}{V_{cd}V_{cs}^*}\right)_{K_{max}^0} = e^{-i2\beta}$$
Gabriella Sciolla (MIT)
Measurements of CKM parameters at the B factories

The golden mode for sin2 β : sin2 β in B⁰ → J/ ψ K⁰

UT constraint #1: angle β

- Ambiguity resolved by Dalitz analysis of $B \rightarrow K^+K^-K_s$, $B \rightarrow J/\Psi K^*$...
- Most stringent constraint on the UT to date (3.5%)

Gabriella Sciolla (MIT)

Measurements of CKM parameters at the B factories

First test of CKM

Measurements of CKM parameters at the B factories

First test of CKM

2008 Nobel Prize in Physics

M. Kobayashi

T. Maskawa

s at the B factories

9

First test of CKM

"Yesterday's sensation is <u>today's calibration</u> and tomorrow's background." Val Telegdi

An independent measurement of β: The Penguin Modes

Decays dominated by gluonic penguin diagrams

• The typical example: $B^0 \rightarrow \phi K_s$

- No tree level contributions: theoretically clean
- SM predicts: $A_{CP}(t) = sin2\beta sin(\Delta mt)$
- Impact of New Physics could be significant
 - New particles could participate in the loop \rightarrow new CPV phases
- Low branching fractions (10⁻⁵)
 - Measure A_{CP} in as many $b \rightarrow sqq$ penguins as possible!
 - φK^0 , $K^+ K^- K_S$, $\eta' K_S$, $K_S \pi^0$, $K_S K_S K_S$, ωK_S , $f_0(980) K_S$

The silver penguin: $B^0 \rightarrow \eta' K^0$

Measurements of CKM parameters at the B factories

12

NP test #2: sin2β: penguins vs golden mode

	5111(2)) = 5111				$C_f = -A$	۹ _f	HFAG CKM2008
o→ccs	world Average	w	0.67 ± 0.02		DeDer			
٩,	BaBar —		$0.26 \pm 0.26 \pm 0.03$	0	BaBar			$-0.14 \pm 0.19 \pm 0.0$
× ÷	Belle		0.67 -0.32	ф Т	Belle	E Š		$0.31_{-0.23}^{+0.04} \pm 0.04 \pm 0.00$
	Average	<mark>- ★ č</mark>	0.44 +0.17		Average			-0.23 ± 0.1
2	BaBar		0.57 ± 0.08 ± 0.02	ا [′] K	BaBar			$-0.08 \pm 0.06 \pm 0.00$
ž,	Belle		- 0.64 ± 0.10 ± 0.04		Belle			$0.01 \pm 0.07 \pm 0.0$
	Average		0.59 ± 0.07		Average			-0.05 ± 0.0
х°	BaBar	<	0.90 +0.18 +0.03	ъ	BaBar	😇 🕇 🕇		-0.16 ± 0.17 ± 0.0
Ř	Belle -		Sector 2 = 0.30 ± 0.32 ± 0.08	×°	Belle 🛏			-0.31 ± 0.20 ± 0.0
×°	Average		0.74 ± 0.17	¥°	Average	<mark>+≻</mark>		-0.23 ± 0.1
Q,	BaBar	- C*	• 0.55 ± 0.20 ± 0.03	Q,	BaBar	<mark>ហ ខ្ល</mark> ី	—	$0.13 \pm 0.13 \pm 0.0$
×	Belle		0.67 ± 0.31 ± 0.08	×	Belle	<u>⊨ ★ <mark>4</mark> 8</u>		-0.14 ± 0.13 ± 0.0
н	Average	- -	0.57 ± 0.17	В	Average	<u> </u>		0.01 ± 0.1
ى ە	BaBar	ب 😽 ا	$0.61 + 0.22 \pm 0.09 \pm 0.08$	ø	BaBar	ਾ <mark>ਰ </mark>★ ਤ ੂ	→ → 0.	02 ± 0.27 ± 0.08 ± 0.0
×	Belle	- 	$0.64^{+0.19}_{-0.25} \pm 0.09 \pm 0.10$	Y.	Belle		<mark>_</mark>	0.03 +0.24 ± 0.11 ± 0.1
	Average		0.63 +0.17	P	Average	<u> </u>	_	-0.01 ± 0.2
<i>(</i> 0	BaBar	- 	0.55 ^{+0.26} _{-0.29} ± 0.02		BaBar*			-0.52 ^{+0.22} ± 0.0
¥.	Bolle	<u> </u>	0.11 ± 0.46 ± 0.07	×ຶ	Belle			$0.09 \pm 0.29 \pm 0.0$
З	Average	T * S	0.45 ± 0.24	3	Average	<u>+</u>		-0.32 ± 0.1
	BaBar	+ C #	0.64 +0.15		BaBar		2	0.16 ± 0.1
Ľ,	Belle	- 4	0.60 +0.16	Ч	Belle	- <u>4</u>		0.05 ± 0.1
÷0	Average		0.62 +0.11	÷°	Average	□ □ □ □ □ □	Š	0.10 ± 0.1
Ŷ	BaBar		0.86 ± 0.08 ± 0.03	Ŷ	BaBar	, , , , , , , , , , , , , , , , , , , 		$-0.05 \pm 0.09 \pm 0.00$
Ŷ	Belle		0.68 ± 0.15 ± 0.03 +0.21	Ţ,	Belle	No.		$0.09 \pm 0.10 \pm 0.00$
t .	Average		0.82 ± 0.07	ŧ	Average	₩ ₹		0.01 ± 0.0

NP test #2: sin2β: penguins vs golden mode

CKM2008

 $sin2\beta$ (BaBar + Belle average)

No discrepancy observed

 If New Physics is there, effects are very subtle

Visible at future machines?

- Hadronic uncertainties for golden penguin modes are ~0.02
- SuperB or LHCb

The angle $\boldsymbol{\alpha}$

α from $B^0 \rightarrow \rho \rho / \pi \pi / \rho \pi$

• If tree diagram dominates:

 $\lambda = (-1) \left(\frac{V_{tb}^{*} V_{td}}{V_{tb} V_{td}^{*}} \frac{V_{ud}^{*} V_{ub}}{V_{ud} V_{ub}^{*}} \right)$

 $A_{CP}(t) = \sin 2\alpha \sin \Delta m t$

If penguin contribution is non negligible

 $\sin 2\alpha \to \sqrt{1 - C^2} \cdot \sin 2\alpha_{eff}$

with $\alpha_{eff} = \alpha - \Delta \alpha$

- Isospin analysis measures $\Delta \alpha$
 - Gronau and London, PRL65, 3381 (1990)
- Recent progress in B-->ρρ decays
 - New BaBar result: arXiv:0901.3522 (hep-ex)

Gabriella Sciolla (MIT)

Measurements of CKM parar

The long road to $\boldsymbol{\alpha}$

- CP violation parameters in $B^0 \to \rho^+ \rho^-$
- Fraction of longitudinal polarization
 - B-->ρρ is a vector-vector final state
 - ~ 100% longitudinally polarized :-)
- All 5 BF needed to build isospin triangle
 - Neutral channel very hard to get to!

BaBar arXiv:0901.3522

New constraints on α from $\rho\rho$

New constraints on α (WA)

19

New constraints on α (WA)

The angle γ

Use interference between $B^+ \rightarrow D^0 K^+$ and $B^+ \rightarrow \overline{D}^0 K^+$ with both D^0 and \overline{D}^0 decaying to the same final state f

NB: only tree diagrams: 100% Standard Model

Gabriella Sciolla (MIT)

Measurements of CKM parameters at the B factories

$\gamma \text{ from } B \to DK$

- GWL (Gronau, Wyler, London)
 - $D \rightarrow CP$ eigenstate
 - Theoretically clean
 - Small interference: needs more data
- ADS (Atwood, Dunietz, Soni)
 - $A(\overline{D} \to f)$ is doubly Cabibbo suppressed
 - Larger interference
 - Small BF: needs more data

- Dalitz method (Giri, Grossman, Soffer, Zupan)
 - Exploits interference pattern in Dalitz plot in $D \rightarrow K_S \pi^+ \pi^-$
 - Combines many modes → statistical advantage
 - Small systematics due to Dalitz model

Currently most sensitive

Summary of γ measurements

The left side: R_b

NB: β is the best measured quantity in the Unitarity Triangle

 $\beta = (21.1 \pm 0.9)$ degrees

Semileptonic B Decays

- Sensitive to hadronic effects
 - Theory error not negligible
- $Prob(b \rightarrow c)/Prob(b \rightarrow u) \sim 50$
 - *V_{cb}* precisely measured (±2%)

 V_{ub} is the challenge

Two approaches to V_{ub}

Inclusive $B \rightarrow X_u l v$

- Hadronic final state is not specified
- b→c l v background is suppressed using kinematical variables
- Partial rate is measured
 - \rightarrow theoretical uncertainties ~6%

Exclusive $B \rightarrow \pi l v$

- Better S/B but lower branching fraction (10⁻⁴)
- Needs form factor calculation from Lattice QCD

 \rightarrow uncertainty of ~> 10%

Example:

BaBar's V_{ub} in tagged events

- $Y(4s) \rightarrow B_1 B_2$
 - $B_1 \rightarrow hadronic/SL \mod B_2 \rightarrow ulv$
- Partial BF extracted fitting
 M_X, q², P⁺=E_X-|P_X| distributions

-	Method	$\Delta \mathcal{B}(\overline{B} \to X_u \ell \bar{\nu}) \ (10^{-3})$	$ V_{ub} ~ imes (10^{-3})$
a)	M_X	$1.18\pm 0.09\pm 0.07\pm 0.01$	$\begin{array}{c} 4.27 \pm 0.16 \pm 0.13 \pm 0.30 \ [4] \\ 4.56 \pm 0.17 \pm 0.14 \pm 0.32 \ [5] \end{array}$
b)	P_+	$0.95 \pm 0.10 \pm 0.08 \pm 0.01$	$\begin{array}{c} 3.88 \pm 0.19 \pm 0.16 \pm 0.28 \ [4] \\ 3.99 \pm 0.20 \pm 0.16 \pm 0.24 \ [5] \end{array}$
c)	M_X, q^2	$0.81 \pm 0.08 \pm 0.07 \pm 0.02$	$\begin{array}{l} 4.57 \pm 0.22 \pm 0.19 \pm 0.30 \ [4] \\ 4.64 \pm 0.23 \pm 0.19 \pm 0.25 \ [5] \\ 4.93 \pm 0.24 \pm 0.20 \pm 0.36 \ [6] \end{array}$

$|V_{ub}|$ from Inclusive $B \rightarrow X_u | v$

Conclusion

- Standard Model: precision
 - Tremendous improvement in ρ and η
 - Precision ~ 0.02-0.03
 - First quantitative test of CPV in SM
 - CKM is the dominant source of CPV

- New Physics: redundancy
 - <u>Many</u> different channels searched
 - No outstanding inconsistencies found F
 - Limits on New Physics (Gambino)
 - B factories will soon pass the baton
 - LHCb & SuperB

Gabriella Sciolla (MIT)

Measurements of CKM

