Searches for a Light Higgs Boson at the Tevatron

Artur Apresyan

Purdue University On behalf of the CDF and DØ Collaborations

Les Rencontres de Physique de la Vallée d'Aoste, La Thuile 2009

Constraints on the Higgs mass

Standard Model: a very successful theory

- Explains most of known phenomenology of particle physics
- Last missing piece: the Higgs boson, has yet to be detected
 - In a sense, the fact that (W[±], Z) are massive is a *testament* of Higgs-like mechanism at work
- > The SM does not predict the mass of Higgs boson
 - Need to be determined from experiment
- Direct observation of Higgs boson is needed
 - LEP excluded SM Higgs boson with $M_H < 114.4 \text{ GeV/c}^2$ at 95%CL
- Higgs boson enters into radiative corrections
 - Constrain the mass of Higgs boson from precision measurements
 - Logarithmic dependence causes only weak constraints
 - With latest top/W mass from Tevatron: $M_H < 154 \text{ GeV/c}^2$ at 95% CL

Tevatron Experiments

- The only machine currently capable to directly probe the Higgs sector above LEP limit
 - Proton-antiproton collisions at 1.96 TeV center-of-mass energy
 - Two-multipurpose detectors: CDF and D0, stable operations

Tevatron Experiments

Tevatron Experiments

Tevatron Luminosity Progress

Record peak inst. luminosity 3.6 E 10³² cm⁻² s⁻¹

Record luminosity/week

74 pb⁻¹

Record luminosity/month

263 pb⁻¹

Total Luminosity delivered

6 fb⁻¹

Higgs boson at the Tevatron

- The gluon fusion is the dominant production mode: $\sigma \sim 1.1-0.1 \ pb$
- W/Z associated production next most frequent mode: σ $\sim 0.2-0.01~pb$

Light Higgs boson at the Tevatron

- Not feasible, swamped by QCD
- Rely on VH: W/Z decays provide signature to increase S/B
- Additional modes, *e.g.* VBF, ttH, $H \rightarrow \gamma \gamma$

- The gluon fusion is the dominant production mode: σ
 ~1.1-0.1 pb
- W/Z associated production next most frequent mode: σ ~0.2-0.01 pb

Heavy Higgs boson at the Tevatron

•High Mass: $M_H \gtrsim 135 GeV/c^2$

- $gg \rightarrow H \rightarrow W^+W^-$ dominates
- Leptonic decays of the W's help to suppress backgrounds
- Associated modes also contribute
- See next talk by H.Greenlee!

- The gluon fusion is the dominant production mode: σ
 ~1.1-0.1 pb
- W/Z associated production next most frequent mode: σ
 ~0.2-0.01 pb

The challenges of the Higgs searches

Artur Apresyan

Artur Apresyan

The Higgs search strategy

- Efficient triggers to keep most of potential Higgs candidates
 - **High P_T charged leptons**: e or μ to select leptonic decays of the W/Z
 - **MET+Jets**: to select $ZH \rightarrow vvb\bar{b}$ or $WH \rightarrow \not vb\bar{b}$ (the lepton is not identified)
 - Lepton+Track for $\tau \tau$ -modes or MET+Jets for $WH \to \tau v b \bar{b}$
- Increase signal yields:
 - Improve lepton acceptance by improving the e / μ ID
 - More efficient *b*-tagging algorithms: crucial for low-mass Higgs: $H \rightarrow b\bar{b}$ dijet mass resonance
 - Better understand the calorimeter response: Dijet mass resolution

Events per fb ⁻¹	ZH->IIbb	WH->Inbb	ZH->vvbb
Signal produced	5	30	15
Signal accepted	~1	~3	~2
Signal/Background	~1/200	~1/280	~1/400

The Higgs search strategy

- Efficient triggers to keep most of potential Higgs candidates
 - High P_T charged leptons: *e* or μ to select leptonic decays of the W/Z
 - **MET+Jets**: to select $ZH \rightarrow vvb\bar{b}$ or $WH \rightarrow \not vb\bar{b}$ (the lepton is not identified)
 - Lepton+Track for au -modes or MET+Jets for $WH o au vbar{b}$
- Increase signal yields:
 - Improve lepton acceptance by improving the e / μ ID
 - More efficient *b*-tagging algorithms: crucial for low-mass Higgs: $H \rightarrow b\bar{b}$ dijet mass resonance
 - Better understand the calorimeter response: Dijet mass resolution

Events per fb ⁻¹	ZH->IIbb	WH->Inbb	ZH->vvbb
Signal produced	5	30	15
Signal accepted	~1	~3	~2
Signal/Background	~1/200	~1/280	~1/400

- Looking for a resonance in Dijet mass
 - Backgrounds are large in size, with large uncertainties

- Use multivariate techniques to maximally separate signal from backgrounds
 - Neural Networks, Matrix Element, Boosted Decision Tree, etc...

The Higgs search strategy

- Efficient triggers to keep most of potential Higgs candidates
 - High P_T charged leptons: *e* or μ to select leptonic decays of the W/Z
 - **MET+Jets**: to select $ZH \rightarrow vvb\bar{b}$ or $WH \rightarrow \not vb\bar{b}$ (the lepton is not identified)
 - Lepton+Track for au -modes or MET+Jets for $WH o au vbar{b}$
- Increase signal yields:
 - Improve lepton acceptance by improving the *e* / *µ* ID

- More efficient *b*-tagging algorithms: crucial for low-mass Higgs: $H \rightarrow b\bar{b}$ dijet mass resonance
- Better understand the calorimeter response: Dijet mass resolution

Events per fb ⁻¹	ZH->IIbb	WH->Inbb	ZH->vvbb
Signal produced	5	30	15
Signal accepted	~1	~3	~2
Signal/Background	~1/200	~1/280	~1/400

- The statistical significance of single channels is not enough
 - Combine all the channels within CDF and D0, and combine CDF and D0
 - Collect as much data as possible: improve triggers, data-taking efficiency

Analysis tools: *b*-jet identification

Dijet Invariant Mass: resonance from $H \rightarrow bb$

- Exploit long lifetime of B-mesons: *b*-tagging
 - Identify signal with jets from *b*-quarks
 - Suppress light flavor backgrounds (*u*, *d*, *s* or *g*)
 - Improves S/B to from 1:1000 to ~1/50-1:100

• Various algorithms used by CDF and D0

- Identify the displaced vertex from the decay of B
- Exploit multiple features of b-jets: NN tagging
- Probability that the tracks come from prime vtx: JetProb
- High *b*-tagging efficiency: 40-70%

Analysis tools: lepton identification

ເ<mark>ສີ</mark> 200 ເ

150

100

50

20

40

60

80

100

120

- Identify the decays of the W/Z
 - Electrons: tracks matched to shower max in ECAL
 - Taus: tracks matched to a calorimeter cluster 0
 - Muons: tracks matched to muon chambers 0
- Expand the lepton coverage
 - Interplay between sub-detectors: cover the "holes"
 - Include forward detectors to extend coverage

DØ Bunll Preliminary 0.94 fb

W+iets

OCD multijet

 $H_{+}(W/Z) \times 100$

Other SM backgrounds

W_T mass with

 $W \rightarrow \tau \nu (D0)$

140

160 180

Transverse W Mass (GeV)

200

Analysis tools: lepton identification

eg 250

s 200

150

100

50

20

40

60

80

100

120

DØ Bunll Preliminary 0.94 fb

W+iets

QCD multijet

H+(W/Z) x 100

Other SM backgrounds

W_T mass with

 $W \rightarrow \tau \nu (D0)$

140

160 180

Transverse W Mass (GeV)

200

- Identify the decays of the W/Z
 - Electrons: tracks matched to shower max in ECAL
 - Taus: tracks matched to a calorimeter cluster 0
 - Muons: tracks matched to muon chambers 0
- Expand the lepton coverage
 - Interplay between sub-detectors: cover the "holes"
 - Include forward detectors to extend coverage

Analysis tools: multivariate techniques

- Maximize discriminating power: global kinematics of signal & backgrounds
 - Machine learning techniques: Neural Networks (NN), Boosted Decision Trees (BDT), etc.
 - Calculate the probabilities for event to come from signal from LO matrix element (ME)
- Multivariate techniques help to improve the sensitivity
 - Remove large, uncertain backgrounds to reduce large systematic effects
 - Increase the significance of signal
 - Test these methods in well-known processes: e.g. ttbar
- Evidence for semi-leptonic WW/WZ at D0: Random Forest (RF) technique
 - Dijet mass scan yields 2.9s.d. (expected), output of RF improves sensitivity to 3.6s.d.
 - Observed signal significance 4.4s.d.: $\sigma^{\text{meas}}=20.2\pm4.5 \text{ pb}$ ($\sigma^{\text{theory}}=16.1\pm0.1 \text{ pb}$)

Two charged leptons: $ZH \rightarrow \ell^+ \ell^- b\bar{b}, \ \ell = e, \mu$

- Fully reconstructed final state
 - Two resonances: $H \rightarrow bb$ and $Z \rightarrow ll$
 - The dilepton mass cut $M_{ll} \approx M_Z$
- Dominant backgrounds:
 - Z+jets (irreducible Z+bb), top, dibosons
- Small $\sigma \times Br$: ~1 event/fb⁻¹
 - Acceptance is crucial: employ loose *b*-tagging
 - Analyze events with at least one *b*-jet

Special techniques:

- Correct jet E_T's using MET=> JER improves from 18% to 11%
- Lepton coverage: stubless µ's, forward e's: improve limit by 10%

Two charged leptons: $ZH \rightarrow \ell^+ \ell^- b\bar{b}, \ \ell = e, \mu$

One charged lepton: $WH \rightarrow \ell v b \bar{b}, \ \ell = e, \mu$

- *"Large"* $\sigma \times Br$, clean signature
 - Acceptance to about 3-4 events/fb⁻¹
 - High P_T leptons, MET and ≥ 2 jets
- Dominant backgrounds:
 - W+bb, top, diboson, QCD multi-jet

Special techniques:

- CDF/DØ: at least 1 b-tag, loose double-tag
- CDF/DØ: ME to discriminate signal from bckg
- CDF: loose muons, NN-based jet correction
- DØ: forward electrons, events with 3 jets

One charged lepton: $WH \rightarrow \ell v b \bar{b}, \ \ell = e, \mu$

- Large signal acceptance: $ZH \rightarrow VVb\bar{b} / WH \rightarrow \not (Vb\bar{b})$
 - Acceptance to about 3-4 events/fb⁻¹
 - Large MET and ≥ 2 jets
 - Information of W/Z missed: no strong constraints
- Dominant backgrounds:
 - QCD with fake MET, W/Z+jets, top, diboson

Special techniques:

- CDF/DØ: data-driven QCD model, track MP_T
- CDF: at least 1 b-tag, 3 tagging channels, NN-based event selection (QCD rejection NN), track-based jet corrections
- CDF: accept $WH \to \tau v b \bar{b}$ with hadronic τ

Other channels: $H \rightarrow \tau \tau + 2$ *jets*, $WH \rightarrow \tau v b\bar{b}$

- Analyze all feasible channels
 - Additional sensitivity in combination
- ▶ CDF: H->*ττ*+2 jets
 - Largest backgrounds: QCD fakes, $Z \rightarrow \tau \tau + jets$
 - Sensitivity to WH/ZH, VBF, ggH
 - Train 3 NN targeting specific backgrounds
- ▶ DØ: WH-> *tubb*: hadronic *t*+MET+*b*-jets
 - Largest backgrounds: W+jets, top, multijet
 - Require 2 b-tagged jets
 - Scan the Dijet Mass distribution

Additional channels

- DØ: ttH->*lubbbbqq* (2.1fb⁻¹)
 - Scan the distribution of H_T: scalar sum of jet
 - 4 or 5 jets, 1–3 *b*-tagged jets
 - Exp (Obs) Limit: 45.3 (63.9)*SM
- ▶ DØ: H→YY (4.2 fb⁻¹)
 - Scan the Diphoton mass
 - Exp (Obs) Limit: 18.5 (15.8)*SM
- CDF: VH->qqbb (2.0fb⁻¹)
 - Good signal acceptance: large BR(W/Z->qq)
 - Employ ME technique, 2 *b*-tagged jets
 - Exp (Obs) Limit 37 (38)*SM

All limits on this page at

CDF and DØ combined limits

- Increase the Tevatron reach: statistically combine all search channels
 - Effectively double the analyzed luminosity
 - Systematic uncertainties: nuisance parameters with truncated Gaussian constraints
 - Set 95% C.L. upper limits on the Higgs boson production cross-section

CDF and DØ combined limits

- Increase the Tevatron reach: statistically combine all search channels
 - Effectively double the analyzed luminosity
 - Systematic uncertainties: nuisance parameters with truncated Gaussian constraints
 - Set 95% C.L. upper limits on the Higgs boson production cross-section

Tevatron: future prospects

- Experiments are continuously improving analysis technique:
 - Progress much faster than only from additional data
 - Sensitivity increased factor of 1.5 w.r.t last year: equivalent of more than double luminosity
 - Should be able to probe SM cross-sections with full Tevatron luminosity

- Experiments are continuously improving analysis technique:
 - Progress much faster than only from additional data
 - Sensitivity increased factor of 1.5 last year: equivalent of more than double luminosity
 - Should be able to probe SM cross-sections with full Tevatron luminosity

- Experiments are continuously improving analysis technique:
 - Progress much faster than only from additional data
 - Sensitivity increased factor of 1.5 last year: equivalent of more than double luminosity
 - Should be able to probe SM cross-sections with full Tevatron luminosity

Tevatron: luminosity prospects

Luminosity projection curves for Run II

Summary

- Accelerator and the experiments performing very well
- Broad program of Higgs physics
 - Search for signal in all feasible channels
 - Quick turn-around to analyze additional accumulated data
- Combined Tevatron sensitivity below 3*SM (for MH=115GeV)
 - Steadily getting close to being able to probe Standard Model Higgs production
- Analysis improvements in progress:

- Enhanced *b*-tagging efficiency, new triggers, additional lepton categories
- Additional tools to increase statistical sensitivity: optimize multivariate tools
- Reduce background uncertainties: systematics will start to be limiting
- The Tevatron does have a chance to find an evidence of Higgs
 - $\,\circ\,$ A flow of improvements and close collaboration between CDF and DØ are crucial

38

Backup

The CDF and D0 detectors

Experiments' performance

- Data taking efficiency ~85-90%
 - ~5% due to trigger dead time
 - ~5% from beam conditions
 - >~5% occasional detector related downtime

The searches for the Higgs boson

• The Higgs mechanism is testable in experiments

- Direct observation of the Higgs boson is needed
- The interactions of the Higgs boson are predicted by theory, but not its mass

- Indirect searches:
 - Constraints from fitting EW data

▶ M_H=84⁺³⁴-26 GeV

- → M_H<154GeV at 95%CL
- Indirect constraints provided first hints of top mass before discovery

Predicted to be 180±12GeV

- Searches for the Higgs boson in 70's-80's
 - Before the LEP era searches were sensitive to $M_H \lesssim 5 GeV$
- LEP provided the most stringent bounds for SM Higgs: $M_H > 114.4GeV$

Electroweak fits

 Indirect constrains from EW parameter fits provided first hints of top quark mass

Setting the limit

Use Bayesian and frequentist approach:

• Bayesian
$$L(R, \vec{s}, \vec{b} | \vec{n}, \vec{\theta}) = \prod_{i=1}^{N_c} \prod_{j=1}^{N_{bins}} \mu_{ij}^{nij} e^{-\mu_{ij}} / n_{ij} / \times \prod_{k=1}^{n} e^{-\theta_k^2/2}$$

• Frequentist(CL_s) $LLR_n = 2 \sum_{i=1}^{N} (s_i - n_i Log(1 + \frac{s_i}{b_i}))$

- If the excess is significant after combination, do more checks to make sure not statistic fluctuation.
- If no excess, set 95% CL upper limit vs mH

