# Charm and Tau Decays at B-Factories

### **Carlos A. Chavez**

University of Liverpool on behalf of the BaBar Collaboration

### Les Rencontres de Physique de la Vallée d'Aoste

La Thuile, March 04, 2009

- 1. B-Factories as Tau and Charm Factories
- 2. Tau Physics Results
- 3. Charm Physics Results







# **B-Factories as Tau and Charm Factories**

# Production<br/>Cross sectionTau<br/> $\sigma_{tt} \sim 0.92 \text{ nb}$ Charm<br/> $\sigma_{cc} \sim 1.30 \text{ nb}$ $\widetilde{\nabla_{tt}} \sim 0.92 \text{ nb}$ $\widetilde{\nabla_{cc}} \sim 1.30 \text{ nb}$ $\widetilde{\nabla_{cc}} \sim 530 \text{ fb}^{-1}$ Rec. Luminosity<br/>~890 fb^{-1}

Data collected

630M cc events,

440M  $\tau$  pairs, etc.

Data collected 1080M cc events, 740M τ pairs,



BELLE

# Tau Physics Results

Lepton universality

|V<sub>us</sub>| measurements

Lepton Flavor Violation decays

Tau Mass and and CPT test

# **Typical Tau Decay at B-Factories**

- Tau pairs are produced back to back in the CM frame
- Taus decay into an odd number of charged tracks (1,3,5) and into any number of neutral pions (0,1,2,3)
- Makes for an easy topological identification and good background rejection
- One tau decays to the signal channel (signal side) while the other tau decays to a lepton or mesons and is used for tagging
- Typical selection criteria include
  - Energy and momentum of the signal side and tag particles
  - Topology of the event



# Lepton Universality

• Lepton Universality assumes that all weak couplings of leptons to the W are the same in the SM:  $g^2$ 

$$\mathbf{g}_{\mathbf{e}} = \mathbf{g}_{\mu} = \mathbf{g}_{\tau} = \mathbf{g}$$
 where  $G_F =$ 

 Need to measure ratios of branching fractions in order to test Lepton Universality

$$\left(\frac{g_{\mu}}{g_{e}}\right)^{2} = \frac{B(\tau \to \mu v_{\mu} \overline{v_{\tau}})}{B(\tau \to e v_{e} \overline{v_{\tau}})} \frac{f(m_{e}^{2} / m_{\tau}^{2})}{f(m_{\mu}^{2} / m_{\tau}^{2})}$$

$$\left(\frac{g_{\tau}}{g_{\mu}}\right)^{2} = \frac{B(\tau \to X \nu_{\tau})}{B(X \to \mu \nu_{\mu})} \frac{2m_{X}m_{\mu}^{2}\tau_{X}}{\delta_{X}m_{\tau}^{3}\tau_{\tau}} \left(\frac{1-m_{\mu}^{2}/m_{X}^{2}}{1-m_{X}^{2}/m_{\tau}^{2}}\right)^{2} \qquad X=K, \pi$$

$$\delta_{X} = \text{radiative correction}$$



# Lepton Universality Results



# Determination of |V<sub>us</sub>|

•  $V_{us}$  From CKM unitarity  $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$ From superallowed  $\beta$  decays  $|V_{ud}| = 0.97408 \pm 0.00026$ From e.g. inclusive  $X_u lv$  decays  $|V_{ub}| = (3.93 \pm 0.36) \times 10^{-3}$  PDG, Phys. Lett. B. 667, 1 (2008)

$$V_{us} = \sqrt{1 - |V_{ud}|^2} = 0.2262 \pm 0.0011$$



# |V<sub>us</sub>| From Tau Decays

 V<sub>us</sub> can be determined by measuring the ratio of the strange:non-strange content branching fractions of the τ lepton

$$R_{\tau,had} = \frac{\Gamma[\tau^- \to v_{\tau}hadrons(\gamma)]}{\Gamma[\tau^- \to e^- v_{\tau} \overline{v_e}]}$$
$$|V_{us}|^2 = \frac{R_{\tau,strange}}{(R_{\tau,non-strange} / |V_{ud}|^2) - \delta R_{\tau,theory}}$$

$$R_{ au,non-strange} = R_{ au,had} - R_{ au,strange}$$

- Measurements of  $R_{\tau,\text{strange}}$ 
  - include Babar preliminary [ICHEP08]
    - $B(\tau \rightarrow K \vee)$
    - $B(\tau \rightarrow K^0 \pi^- v)$
  - include Belle [ICHEP08]
    - $B(\tau \rightarrow K^- \pi^- \pi^+ \nu)$

World average (preliminary)

 $|V_{us}| = 0.2159 \pm 0.0030$ 

ICHEP08 Proc: arXiv:0811.1429  $B(\tau^- \rightarrow X_{us}^- \nu_{\tau})$  $X_{us}^{-}$  $\mathcal{B}_{\text{World Averages}}(\%)$  $K^{-}$  [ $\tau$  decay]  $0.690 \pm 0.010$  $(0.715 \pm 0.004)$  $([K_{\mu 2}])$  $\widehat{\mathbf{S}}_{K} \overset{([K_{\mu}]{K})}{\pi^{0}} \overset{([K_{\mu$  $0.426 \pm 0.016$  $0.835 \pm 0.022$  (S = 1  $0.058 \pm 0.024$  $\bar{K}^{0}\pi^{0}\pi^{-}$  $0.360 \pm 0.040$  $\begin{array}{c} \overset{\bullet}{\underset{K^{-}\pi^{-}\pi^{+}}{\underset{K^{-}\eta}{\overset{\bullet}}} \\ \overset{\bullet}{\underset{K^{-}\eta}{\overset{\bullet}} \end{array}$  $0.290 \pm 0.018 \ (S = 2.3)$  $0.016 \pm 0.001$  $\mathbf{\overleftarrow{o}}(\bar{K}3\pi)^{-}$  (est'd)  $0.074 \pm 0.030$  $\bigcup_{(\bar{K}4\pi)^{-} \text{ (est'd)}}^{K_1(1270) \to K^{-}\omega}$  $0.067 \pm 0.021$  $0.011 \pm 0.007$  $K^{*-}\eta$  $0.014 \pm 0.001$  $0.0037 \pm 0.0003$  (S = 1  $K^-\phi$ TOTAL  $2.8447 \pm 0.0688$  $(2.8697 \pm 0.0680)$ 

 $3\sigma$  deviation from Unitarity result

 $|V_{us}| = 0.2262 \pm 0.0011$ 

# Lepton Flavor Violation (LFV)

- Many new physics models predict LFV decay rates within reach at the B-Factories
- Searching for LFV events is done by looking at a signal box defined by

$$\Delta m = m_{rec} - m_{\tau}$$

$$\Delta E = E_{rec} - E_{CM}$$

- No neutrino on signal side (fully reconstructed τ)
- Tag side is 1-prong identified as electron or muon



## **LFV Results**



Carlos A. Chavez

# Tau Mass and CPT Test



# **Charm Physics Results**

 $D^0$  Mixing Measurements  $-D^0 \rightarrow K^+ K^-, \pi^+ \pi^ -D^0 \rightarrow K^+ \pi^ -D^0 \rightarrow K_s \pi^+ \pi^-$ 

CP Violation in D Decays

# D<sup>0</sup> Mixing Formalism

Neutral D mesons are produced  $D_1, D_2$  have masses  $M_1, M_2$  and as *flavor eigenstates*  $D^0$  and  $\overline{D^0}$ widths  $\Gamma_1, \Gamma_2$ and decay via : Mixing occurs when there is a  $i\frac{\partial}{\partial t} \begin{pmatrix} D^{0}(t) \\ \overline{D}^{0}(t) \end{pmatrix} = \left(\mathbf{M} - \frac{i}{2}\mathbf{\Gamma}\right) \begin{pmatrix} D^{0}(t) \\ \overline{D}^{0}(t) \end{pmatrix}$ non-zero mass difference  $\Delta M = M_1 - M_2$ as mass eigenstates  $D_1$ ,  $D_2$ or lifetime difference  $\Delta \Gamma = \Gamma_1 - \Gamma_2$  $|D_1\rangle = p|D^0\rangle + q|\overline{D}^0\rangle$ For convenience define quantities x $|D_2\rangle = p|D^0\rangle - q|\overline{D}^0\rangle$ and y where  $|q|^2 + |p|^2 = 1$  and  $x = \frac{\Delta M}{\Gamma}, \ y = \frac{\Delta \Gamma}{2\Gamma}$  $\left(\frac{q}{p}\right)^2 = \frac{M_{12}^* - \frac{i}{2}\Gamma_{12}^*}{M_{12} - \frac{i}{2}\Gamma_{12}}$ where  $\Gamma = \frac{\Gamma_1 + \Gamma_2}{2}$ 

# Lifetime Ratio Measurements

t (ps)

- In the absence of *CPV*, *D*<sub>1</sub> is *CP*-even and *D*<sub>2</sub> is *CP*-odd
  - Measurement of lifetimes  $\tau$  for  $D^0$ decays to *CP*-even and *CP*-odd final states lead to a measurement for  $y_{cp}$

$$y_{CP} \equiv \frac{\tau_{K\pi}}{\langle \tau_{hh} \rangle} - 1, \quad h = K \text{ or } \pi$$

Allowing for CPV, measure the D<sup>0</sup> and D<sup>0</sup> asymmetry

 $\Delta Y = \frac{\tau_{K\pi}}{\left\langle \tau_{hh} \right\rangle} \frac{\tau_{hh}^{+} - \tau_{hh}^{-}}{\tau_{hh}^{+} + \tau_{hh}^{-}} = -(1 + y_{cp})A_{\Gamma}$ 

10

**Events/0.05 ps** 

- Tagged events (from *D*<sup>\*+</sup>! *D*<sup>0</sup>π<sup>+</sup>, decays)
- Most of systematic error cancels in the lifetime ratio.
- Bkg related systematics don't.
  - Require:p\*>2.5GeV/c, σ<sub>t</sub><0.37ps
- Purity of selection 98%, 98%,
   92% for KK, Kπ, ππ, respec.



t (ps)

t (ps)

# Lifetime Difference Results



# Mixing in "Wrong Sign" Decays $(D^0 \rightarrow K^+ \pi^-)$ Two types of WS Decays:<br/> - Doubly Cabibbo-supressed (DCS)<br/> - Mixing followed by Cabibbo-Favored (CF) decayTwo ways to reach same final state $\Rightarrow$ interference!

Discriminate between DCS and Mixing decays by their proper time evolution (assuming *CP*-conservation and |x|«1, |y|«1) :

$$\frac{d\Gamma}{dt}[|D^{0}(t)\rangle \rightarrow f] \propto e^{-\Gamma t} \left(R_{\rm D} + \sqrt{R_{\rm D}}y' \ \Gamma t + \frac{{x'}^{2} + {y'}^{2}}{4}(\Gamma t)^{2}\right)$$
DCS decay
Interference between DCS and mixing
Mixing

 $\delta_{K\pi}$  strong phase difference between CF and DCS decay amplitudes

$$x' = x \cos \delta_{K\pi} + y \sin \delta_{K\pi}, \qquad y' = -x \sin \delta_{K\pi} + y \cos \delta_{K\pi}$$



CLEOc has measured  $\delta_{K\pi}$ , used to translate x'~x and y'~y, Phys. Rev. D 78, 012001 (2008)

# Mixing in $D^0 \rightarrow K_s \pi \pi$ Decays



$$m_{\pm} = \left\{ egin{array}{ccc} m(K_s,\pi^{\pm}) & D^{*+} o D^0 \pi^+ \ m(K_s,\pi^{\mp}) & D^{*-} o \overline{D}^0 \pi^- \end{array} & e_{1,2}(t) = \exp\left(-i(m_{1,2}-i\Gamma_{1,2}/2)t
ight) 
ight.$$

Measures x and y: no strong phase, sensitive to x directly

Carlos A. Chavez

La Thuile, 4<sup>th</sup> March 2009

 $D^0 \rightarrow K_s \pi \pi$  Results

### PRL 99, 131803 (2007) Lumi=540 fb<sup>-1</sup> **Proper-time fit results** $x_{K_s\pi\pi} = [0.80 \pm 0.29(stat.) \pm 0.17(syst.)]\%$ no CPV (stat. only -----95% CL contours — no CPV $y_{K,\pi\pi} = [0.33 \pm 0.24(stat.) \pm 0.12(syst.)]\%$ Dotted: stat. Solid: stat.+syst. 10 5 y (%) Events/100fs (a) 10<sup>4</sup> 0 10<sup>3</sup> **No-mixing** 10 <sup>2</sup> excluded at 2.2σ -1 -1 0 1 2 (b)x (%) No evidence for Largest systematics: **CP** violation In x: from Dalitz fit model 0.08 In y: from event selection 2000 0 4000 -2000 Proper time (fs)

(a) Decay-time distribution for total Dalitz-plot region.

(b) Ratio of decay-time distributions for  $K^*(892)^+$  and  $K^*(892)^-$  regions.

# **Collective Evidence for** *D*<sup>0</sup> **Mixing**

| BABAR: PRL 98, 211802 (2007)           | $D^0 \rightarrow K^+ \pi^-$ decay time analysis                                  | $3.9\sigma$  |
|----------------------------------------|----------------------------------------------------------------------------------|--------------|
| BELLE: PRL 98, 211803 (2007)           | $D^0 \rightarrow K^+ K^-, \pi^+ \pi^- vs K^+ \pi^-$ lifetime difference analysis | $3.2\sigma$  |
| BELLE: PRL 99,131803 (2007)            | $D^0 \rightarrow K_s \pi^+ \pi^-$ time dependent amplitude analysis              | $2.2\sigma$  |
| CDF: PRL 100, 121802 (2008)            | $D^0 \rightarrow K^+ \pi^-$ decay time analysis                                  | <b>3.8</b> σ |
| BABAR: PRD <b>78</b> , 011105 R (2008) | $D^0 \rightarrow K^+ K^-, \pi^+ \pi^- vs K^+ \pi^-$ lifetime difference analysis | $3\sigma$    |
| BABAR: arXiv:0807, 4544 (2008)         | $D^0 \rightarrow K^+ \pi^- \pi^0$ time dependent amplitude analysis              | 3.1 <i>o</i> |
|                                        | all mixing results combined by HFAG:                                             | ~10 <i>o</i> |



# **Time Integrated CP Violation**

- Measure the time integrated CP asymmetries
- SM predictions for  $A_{CP}$  are tiny: O(0.001% 0.01%)  $a_{CP}^{\pi\pi} = \frac{\Gamma(D^0 \to \pi^- \pi^+) \Gamma(\overline{D}^0 \to \pi^- \pi^+)}{\Gamma(D^0 \to \pi^- \pi^+) + \Gamma(\overline{D}^0 \to \pi^- \pi^+)}$
- $\Rightarrow$  observation of  $A_{CP}$  at ~0.1% level would indicate NP
- Relative π<sub>s</sub><sup>+</sup> and π<sub>s</sub><sup>-</sup> tracking efficiencies not equal
   Use D<sup>0</sup>→K<sup>-</sup>π<sup>+</sup> tagged and untagged data to determine this
  - Due to  $Z/\gamma$  interference and radiative corrections  $D^0$  and  $\overline{D}^0$  are produced with a forward backward asymmetry in C.M. polar angle  $\theta^*$



 $\boldsymbol{a}_{CP}^{KK} = \frac{\Gamma(\boldsymbol{D}^0 \to \boldsymbol{K}^- \boldsymbol{K}^+) - \Gamma(\overline{\boldsymbol{D}}^0 \to \boldsymbol{K}^- \boldsymbol{K}^+)}{\Gamma(\boldsymbol{D}^0 \to \boldsymbol{K}^- \boldsymbol{K}^+) + \Gamma(\overline{\boldsymbol{D}}^0 \to \boldsymbol{K}^- \boldsymbol{K}^+)}$ 



# Summary

- Lepton Universality holds as measured by BaBar
- $|V_{us}|$  in good agreement with CKM Unitarity
  - but there is a ~3 $\sigma$  discrepancy from hadronic  $\tau$  decays
- Limits on LFV in the 10<sup>-7</sup> to 10<sup>-8</sup> range
  - Need Super B-Factory to reach 10<sup>-9</sup>
- Measurements on mass difference between  $\tau^+$  and  $\tau^-$  provide new limits on CPT invariance
- Collective evidence for  $D^0$  mixing is compelling
  - The no-mixing point is excluded at ~10 $\sigma$ , including systematic uncertainties
  - However, no single measurement exceeds  $4\sigma$
- Average values of the mixing parameters are  $x \sim 1$  %,  $y \sim 0.8$  %
  - compatible with the upper range of standard model predictions
- No evidence of *CP* violation in  $D^{\theta}$  decays

# **Backup Slides**

# **Lepton Universality Branching Ratios**





# Mixing in D mesons

- Neutral meson mixing has been already observed in the *K* (1956),  $B_d$  (1987) and  $B_s$  (2006) systems
- Why is  $D^0$  mixing interesting ?
  - It completes the picture of quark mixing already observed in other systems
  - Provides new information about processes with down-type quarks in the mixing loop diagram
  - It is an important step towards the observation of CP violation in the Charm sector
  - New physics may be present depending on the measured values of the mixing parameters

# **Generic Mixing Analysis**



# **BaBar Lifetime Ratio Analysis**



# WS Fit with Mixing



# *Mixing in WS D*<sup>0</sup> $\rightarrow K^+\pi^-\pi^0$ Decays

- Find *CF* amplitude  $\overline{A}_{\overline{f}}$  from timeintegrated fit to RS Dalitz plot
  - isobar model expansion
- Use this in time-dependent fit to WS plot to determine A<sub>f</sub> and mixing parameters.



• Results:

 $\begin{aligned} \textbf{x}'_{\kappa\pi\pi^0} &= \begin{bmatrix} 2.61^{+0.57}_{-0.68}(\textit{stat.}) \pm 0.39(\textit{syst.}) \end{bmatrix} \% \\ \textbf{y}'_{\kappa\pi\pi^0} &= \begin{bmatrix} -0.06^{+0.55}_{-0.64}(\textit{stat.}) \pm 0.34(\textit{syst.}) \end{bmatrix} \% \end{aligned}$ 

- Main systematics:
  - Dalitz plot model
  - Event selection criteria
  - Signal and background yields

No evidence for CPV

# Belle $D^0 \rightarrow K_s \pi \pi$ analysis



Dalitz fit model

Refinement of Belle  $\varphi_3$  measurement 13 BW resonances + non-resonant contribution

| TABLE I: Fit resul | ts for Dalitz | plot parameters. |
|--------------------|---------------|------------------|
|--------------------|---------------|------------------|

| Resonance             | Amplitude           | Phase (deg)     | Fit fraction |
|-----------------------|---------------------|-----------------|--------------|
| $K^{*}(892)^{-}$      | $1.629 \pm 0.005$   | $134.3 \pm 0.3$ | 0.6227       |
| $K_0^*(1430)^-$       | $2.12 \pm 0.02$     | $-0.9 \pm 0.5$  | 0.0724       |
| $K_{2}^{*}(1430)^{-}$ | $0.87 \pm 0.01$     | $-47.3\pm0.7$   | 0.0133       |
| $K^{*}(1410)^{-}$     | $0.65 \pm 0.02$     | $111 \pm 2$     | 0.0048       |
| $K^{*}(1680)^{-}$     | $0.60 \pm 0.05$     | $147 \pm 5$     | 0.0002       |
| $K^{*}(892)^{+}$      | $0.152 \pm 0.003$   | $-37.5 \pm 1.1$ | 0.0054       |
| $K_0^*(1430)^+$       | $0.541 \pm 0.013$   | $91.8 \pm 1.5$  | 0.0047       |
| $K_{2}^{*}(1430)^{+}$ | $0.276 \pm 0.010$   | $-106 \pm 3$    | 0.0013       |
| $K^{*}(1410)^{+}$     | $0.333 \pm 0.016$   | $-102 \pm 2$    | 0.0013       |
| $K^{*}(1680)^{+}$     | $0.73\pm0.10$       | $103 \pm 6$     | 0.0004       |
| $\rho(770)$           | 1 (fixed)           | 0 (fixed)       | 0.2111       |
| $\omega(782)$         | $0.0380 \pm 0.0006$ | $115.1 \pm 0.9$ | 0.0063       |
| $f_0(980)$            | $0.380 \pm 0.002$   | $-147.1\pm0.9$  | 0.0452       |
| $f_0(1370)$           | $1.46 \pm 0.04$     | $98.6 \pm 1.4$  | 0.0162       |
| $f_2(1270)$           | $1.43 \pm 0.02$     | $-13.6 \pm 1.1$ | 0.0180       |
| $\rho(1450)$          | $0.72 \pm 0.02$     | $40.9 \pm 1.9$  | 0.0024       |
| $\sigma_1$            | $1.387\pm0.018$     | $-147 \pm 1$    | 0.0914       |
| $\sigma_2$            | $0.267 \pm 0.009$   | $-157 \pm 3$    | 0.0088       |
| NR                    | $2.36 \pm 0.05$     | $155 \pm 2$     | 0.0615       |



# Mixing in WS $D^0 \rightarrow K^+\pi^-\pi^0$ Decays

• Analysis formally similar to the wrong sign  $D^0 \rightarrow K^+\pi^-$  analysis but now mixing depends on position in Dalitz plot.

signal box:

0.1449<∆m<0.1459 GeV/c<sup>2</sup>

1.8495<m<sub>K ππ</sub><1.8795 GeV/c<sup>2</sup>

The measured mixing parameters are:

$$\begin{aligned} \mathbf{x}_{K\pi\pi}' &= \mathbf{x}\cos\delta_{K\pi\pi^{0}} + \mathbf{y}\sin\delta_{K\pi\pi^{0}} \\ \mathbf{y}_{K\pi\pi}' &= \mathbf{y}\cos\delta_{K\pi\pi^{0}} - \mathbf{y}\sin\delta_{K\pi\pi^{0}} \end{aligned}$$

where  $\delta_{K\pi\pi^0}$  = phase difference between DCS  $D^0 \rightarrow \rho K^+$  and CF  $\overline{D}{}^0 \rightarrow \rho K^+$  reference amplitudes (and cannot be determined in this analysis)

Results : No evidence of CPV  $x'_{K\pi\pi^0} = \begin{bmatrix} 2.61^{+0.57}_{-0.68}(stat.) \pm 0.39(syst.) \end{bmatrix}\%$  $y'_{K\pi\pi^0} = \begin{bmatrix} -0.06^{+0.55}_{-0.64}(stat.) \pm 0.34(syst.) \end{bmatrix}\%$ 

- Main systematics:
  - Dalitz plot model
  - Event selection criteria
  - Signal and background yields



RS signal purity: 99% WS signal purity: 50%

Carlos A. Chavez

# New Physics in Charm?



- $\Delta$ : Standard model predictions for x
- □: Standard model predictions for y
- •: New physics predictions for x
  - Hard to see a clear prediction
  - Pushing the limit down excludes models
     <u>Try to separate x and y!</u>





# Radiative $D^0 \rightarrow \phi \gamma$ and $K^* \gamma$ Decays

Phys. Rev. D78, 071101 (2008)

 $D^0 \rightarrow \phi \gamma$  Cabibbo suppressed,  $D^0 \rightarrow K^{*0} \gamma$  Cabibbo favored radiative  $D^0$  decays dominated by long range processes



| Mode:                                      | Theoretical BF (×10 <sup>-5</sup> ): |
|--------------------------------------------|--------------------------------------|
| $D^{0} \rightarrow \phi \gamma$            | 0.1-3.4                              |
| $D^0 \rightarrow \overline{K}^{*0} \gamma$ | 7-80                                 |

### **Results:**









Rec. Luminosity ~710 fb<sup>-1</sup>

Data collected 660M *BB* pairs, 860M cc events, 1200M  $\tau$ 's, 2.6M B<sub>s</sub>, etc.

# 

Integrated Luminosity [fb<sup>-1</sup>]

300

200

100

PEP II Delivered Luminosity: 553.48/b BaBar Recorded Luminosity: 531.43/b BaBar Recorded Y(4s): 432.89/b

BaBar Recorded Y(3s): 30.23/fb

BaBar Recorded Y(2s): 14.45/lb Off Peak Luminosity: 53.85/lb

