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Summary. — The Pierre Auger Southern Observatory, a hybrid detector for the
study of ultrahigh energy cosmic rays (UHECRs), is now operating for more than five
years and has reached completion. This contribution describes the present status and
performance of the Observatory, showing the advantages provided by the combined
use of two different detection techniques. Selected results are presented with the
emphasis given to the measurement of energy spectrum, arrival directions at the
highest energies and search for photons as primary particles.
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1. – Introduction

The origin of cosmic ray, and in particular at energies near 1020eV, is a puzzling
mystery. Cosmic rays with energies exceeding 1020 eV have been observed for more than
40 years (see e.g. [1]) but due to their low flux only some ten events of such high energies
could be detected up to recently. There are no generally accepted source candidates
known to be able to produce particles of such extreme energies. More over, there should
be a steeping in the energy spectrum near 1020eV due to the interaction of cosmic rays
with the microwave background radiation (CMB), due to the so-called GZK effect [2].
The non-observation of this effect in the data of the AGASA experiment [3] has motivated
an enormous number of theoretical and phenomenological models trying to explain the
absence of the GZK-effect and has stimulated the field as a whole.

Until very recently the experimental situation was very unclear, mainly because of a
lack of statistics. At these extreme energies the flux of cosmic rays is very low, less than
1 particle per km2 per century for cosmic rays above 1020 eV. Due to this, UHECRs can
only be observed indirectly through the extensive air showers (EAS) they induce when
colliding with a nucleus in the atmosphere, with the difficulty that the interpretation
of the observed EAS relies on models of hadronic interaction at energies that have not
been still reached in man-made experiments. Some of the difficulties encountered in the
interpretation of EAS are also believed to stem from the two different techniques with
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which cosmic rays were observed in past experiments, namely arrays of particle detectors
spread over a large area in the case of (for instance) the AGASA experiment[3], and
telescopes that collect the light produced by the fluorescence of the nitrogen molecules
in the atmosphere excited by the passage of the charged particles in the shower in the
case of the HiRes experiment [4].

The Pierre Auger observatory is dedicated to the high statistics study of the high
energy cosmic rays above 3.1018eV. It uses an hybrid design, coupling a surface array
to fluorescence telescopes, the two techniques used by the two controversial experiments
quoted above, which gathered most of the high energy events. It thus provides a powerful
tool to probe the shape of the cosmic rays spectrum, to analyse directions and to try to
measure composition. The southern site, near the town of Malargue in the Argentinian
pampa, has already reached completion, and has been continuously taking data since
2004. After a description of the detector and a summary of its performance, a selection
of the most recent results will be presented.

2. – Design and performance of the Pierre Auger Observatory

The Surface Detector (SD) of the Pierre Auger Observatory is composed of more
than 1600 Water Cherenkov Detectors (WCD) extending over an area of 3000 km2 with
1500 m spacing between detectors [5]. The construction was completed in June 2008.
Figure 1 shows the current status of the array.

Fig. 1. – Actual deployment status of the array. Tanks within the shaded area are in operation.

A water Cherenkov station consists of a cylindrical tank of 1.2 m average height and
10 m2 area, containing 12 tons of purified water. Each station is an independent unit
with low-power electronics, and a GPS and radio communication systems, all powered
by a solar panel and two batteries. The Cherenkov light emitted by the particles ente-
ring a tank is reflected and diffused in its inner walls and collected by three 9-inches
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hemispherical photomultipliers. The corresponding signals are digitized by Flash Analog
Digital Converters (FADC) in time slots of 25 ns, resulting in a FADC trace. The signal
collected in a tank is calculated integrating in time the FADC trace, and is calibrated
in units of Vertical Equivalent Muons (VEM) corresponding to the signal produced by
vertical muons crossing the tank through its center. SD stations are calibrated on line
every few minutes using atmospheric muons.

The SD is overlooked by four FD sites, each holding six fluorescence telescopes. All
24 fluorescence telescopes are in place and taking data. They detect the ultra-violet
fluorescence light excited by the extensive air showers. Each telescope uses Schmidt optics
to image a portion of the sky of 30 × 30◦. The UV light is focused by spherical mirrors
of 3 m2 of area on to a camera of 440 hexagonal photomultipliers each with a field of
view of 1.5◦ diameter. They record the longitudinal shower development and thus provide
a calorimetric measurement of the primary energy with little dependence on hadronic
interaction models.

The Pierre Auger Observatory is the first large aperture instrument to routinely
employ the so-called hybrid technique. About 13% of the operating time, the fluorescence
light emitted by a shower and the timing and signal information from at least one SD
is simultaneously recorded. This unique hybrid combination has enormous advantages
which stem from the fact that one can simultaneously measure several shower observables
with two different techniques.

3. – The energy spectrum of UHECRs

The hybrid nature of the Pierre Auger Observatory and the huge collecting area of the
SD allows the energy spectrum of UHECRs to be measured with unprecedented accuracy
and statistics. The hybrid events, which are air showers detected by both instruments,
are very precisely measured and provide the energy calibration tool. The surface array,
with its near 100% duty cycle, gives the large sample used here. Only ”vertical” events,
i.e. events with zenith angles <60◦ are used. For more inclined showers, due to different
physical characteristics, a different analysis is applied [6].

The comparison of the shower energy, measured using fluorescence, with the SD energy
estimator or a subset of high quality hybrid events is used to calibrate the energy scale
for the array. For so-called vertical events, the parameter chosen as SD energy estimator
is called S(1000), the signal at a distance of 1000 m from the core. The distribution of
particles in the shower at the ground level is sampled at different distances from the
core, and a fit to a Lateral Distribution Function(LDF) allows to determine S(1000) [7].
S(1000) has been shown to be rather insensitive to shower-to-shower fluctuations, nor
does it require accurate knowledge of the shape of the LDF [8]. For a fixed cosmic ray
(CR) energy, S(1000) depends on the zenith angle of the event due to the attenuation of
the shower particles in the atmosphere and other geometrical effects. Under the assump-
tion of anisotropic flux of primary CRs, showers generated by primary particles of the
same energy will arrive at the detector with the same frequency regardless of the zenith
angle (assuming 100% efficiency). Hence, selecting showers arriving with a fixed intensity
(energy) as a function of S(1000), under different zenith angles, allows the measurement
of the attenuation of S(1000) with θ. This is the classical constant integral intensity cut
method (CIC) [9]. This serves to convert S(1000) at any given θ to S(1000) at θ = 38
(S38) which is used as energy estimator. The angle of 38◦minimises uncertainties, as this
is the median zenith angle of the showers of interest. The calibration curve relating S38

and shower energy as obtained with FD data (EFD) in hybrid events is shown in Figure
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2, and it is used to find the energies of the bulk of the events in which there are only SD
measurements.

Fig. 2. – Correlation between log(S38) and log(EF D) for the 661 hybrid events used in the fit.
The full line is the best fit to the data. The fractional difference between the FD and SD energies
is shown in the inset.

The systematic uncertainty due to the calibration procedure is 7% at 1019 eV and 15%
at 1020 eV. The systematic uncertainties on the energy scale EFD sum up to 22% [10].
The largest uncertainties are given by the absolute fluorescence yield (14%) [11], the
absolute calibration of the fluorescence telescopes (9%) and the uncertainty due to the
reconstruction method of the longitudinal shower profile (10%). The uncertainty due
to the water vapour quenching on the fluorescence yield (5%) is taken into account as
described in [12]. Additionally, the wavelength dependent response of the fluorescence
telescopes (3%), the uncertainties on measurements of the molecular optical depth (1%),
on the measurements of the aerosol optical depth (7%) and on multiple scattering models
(1%) are included in the overall systematic uncertainty. The non-detected energy (due
to the contributions of muons and neutrinos) correction, contributes 4% to the total
systematic uncertainty of 22% [13].

To build the spectrum, candidate showers are selected on the basis of the topology
and time compatibility of the triggered detectors. The SD with the highest signal must
be enclosed within an active hexagon, in which all six surrounding detectors were opera-
tional at the time of the event. Thus, it is guaranteed that the shower core is contained
in the array. Applying this condition, the maximum statistical uncertainty in the recons-
tructed S(1000) due to event sampling by the array is ≃ 3% [14]. The trigger efficiency is
greater than 99% for energies above about 3.1018eV [15]. The exposure is calculated by
integrating the number of active detector stations of the surface array over time. Detai-
led monitoring information of the status of each surface detector station is stored every
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second and the exposure is determined with an uncertainty of 3%.
The surface detector is able to operate with an almost 100% duty cycle and collec-

ted the largest data set of ultra-high energy cosmic rays (UHECR) already during the
construction phase. The spectrum corresponding to an exposure of 7000km2 is shown in
Figure 3, together with the event numbers of the underlying raw distribution [16].

Fig. 3. – Energy spectrum derived from surface detector data calibrated with fluorescence
measurements. Vertical error bars represent the statistical uncertainty only. The number of
events in each bin is also given. A 22% systematic uncertainty in the absolute energy scale
comes from the FD energy estimate.

The hypothesis that the cosmic ray spectrum continues with a constant slope above
4.1019 eV is rejected with a significance greater than 6 standard deviations, consistently
with the prediction by Greisen and by Zatsepin and Kuzmin.

4. – Arrival directions of UHECRs

Using data collected between 1 January, 2004 and 31 August, 2007, the Pierre Auger
Observatory has reported evidence of anisotropy in the arrival directions of CR with ener-
gies exceeding ≃ 60 EeV [17]. The arrival directions were correlated with the positions of
nearby objects from the 12th edition of the catalog of quasars and active galactic nuclei
(AGN) by Véron-Cetty and Véron (VCV catalog) [19]. This catalog is not an unbiased
statistical sample, since it is neither homogeneous nor statistically complete. This is not
an obstacle to demonstrating the existence of anisotropy if CR arrive preferentially close
to the positions of nearby objects in this sample. The nature of the catalog, however,
limits the ability of the correlation method to identify the actual sources of cosmic rays.
The observed correlation identifies neither individual sources nor a specific class of astro-
physical sites of origin. It provides clues to the extragalactic origin of the CR with the
highest energies and suggests that the suppression of the flux is due to interaction with
the cosmic background radiation.

The parameters of the test were chosen by an exploratory scan using events prior to
27 May. 2006. The scan searched for a correlation of CR with objects in the VCV catalog
with redshift less than zmax at an angular scale φmax and energy threshold Eth. The
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scan was implemented to find a minimum of the probability P that k or more out of a
total N events from an isotropic flux are correlated by chance with the selected objects
at the chosen angular scale. The minimum of P value was found for the parameters zmax

= 0.018, φmax = 3.1◦, and Eth = 56 EeV. The probability that an individual event from
an isotropic flux arrives within the fraction of the sky prescribed by these parameters
by chance is 0.21. The test was applied to data collected between 27 May 2006 and 31
August 2007. In this independent data, there were 13 events with energy above 56 EeV,
of which 8 have arrival direction closer than 3.1 ◦ from the position of AGN less than 75
Mpc away, with 2.7 expected in average. The probability that this configuration would
occur by chance is 1.7×10−3 This correlation has a less than 1% probability to occur by
chance if the arrival directions are isotropically distributed. Since the analysis reported
in [17], the evidence for anisotropy has not strengthened[18].

Nevertheless, we have demonstrated the anisotropy of the arrival directions of the
highest energy cosmic rays and their extragalactic origin. Our observations are consistent
with the hypothesis that the rapid decrease of CR flux above 60 EeV, shown in section
1 is due to the GZK effect. Additional data are needed to make further progress in the
quest to identify the sites of ultra high energy CR origin.

5. – Limit on photon fraction in cosmic rays

Primary photons can experimentally be well separated from primary hadrons as they
penetrate deeper into the atmosphere, particularly at energies above 1018 eV. Their
shower development is also much less affected by uncertainties of hadronic interaction
models due to the dominant electromagnetic shower component. At the highest energies
the LPM effect further delays the shower development in the atmosphere (moreover in-
creasing shower to shower fluctuations), whereas the pre-showering effect in the Earth
magnetic field causes a more hadron like behavior (see [23] for a review on photon sho-
wers). Primary photons are of interest for several reasons : top-down models, originally
proposed to explain the apparent absence of the GZK effect in AGASA data, predict a
substantial photon flux at high energies [23]. In the presence of the GZK effect, UHE
photons can also derive from the GZK process p+γCMB → p+π0

→ p+γγ and provide
relevant information about the sources and propagation. Moreover, they can be used to
obtain input to fundamental physics and EHE astronomy.

The SD collects large statistics and has some observables sensitive to composition.
Monte Carlo predictions of these SD observables have been compared with those in
nucleonic showers and have shown this sensitivity [20]. Based on these simulations, no
photon candidates were identified in SD data implying that <2%, <5% and <31% of
UHECRs are photons above 1019, 2.1019 and 4.1019 eV respectively.

Experimentally, photon showers can be identified with the FD by their longitudinal
shower profile, most importantly by Xmax, the depth in the atmosphere at which the
number of electrons in a shower reaches a maximum. Xmax is measured with data from
the FD of the Pierre Auger Observatory with an accuracy of less than 20 g.cm−2 if
suitable cuts are made. Data on Xmax can be used to discriminate between photonic and
nucleonic UHE primaries. Due to the much lower multiplicity in particle production in
an electromagnetic cascade, the Xmax of a photon-induced EAS is typically greater than
that of a nucleonic-induced shower.

In Ref. [21] Xmax was used to place an upper limit of 16% on the photon fraction
above 10 EeV. The hybrid detector is fully efficient for shower above 1EeV and it allows
thus composition study at lower energy than with the SD alone. Recently, the work was
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updated with more statistics and extended to data below 10 EeV. New upper limits of
3.8 %, 2.4%, 3.5% and 11.7% on the fraction of photons above 2, 3, 5 and 10 EeV are
obtained[22].

The derived upper limits are shown in Fig. 4 along with previous experimental limits
and model predictions (see Ref. [23] for a review and references).

Fig. 4. – Upper limits on the photon fraction in the integral cosmic-ray flux for different expe-
riments : AGASA (A1, A2) [24], AGASA-Yakutsk (AY) [25], Yakutsk (Y) [26], Haverah Park
(HP) [27, 28]. In black the limits from the Auger surface detector (Auger SD) [20] and in blue
the limits above 2, 3, 5, and 10 EeV derived in this work (Auger HYB). The shaded region shows
the expected GZK photon fraction as derived in [29]. Lines indicate predictions from top-down
models, see [23].

These limits improve significantly upon bounds from previous experiments and put
strong constraints on certain models of the origin of cosmic rays. Current top-down mo-
dels such as the super-heavy dark matter scenario do not appear to provide an adequate
explanation of the UHE cosmic rays. In bottom-up models of acceleration of nuclear pri-
maries in astrophysical sources, the expected photon fluxes are typically well below the
current bounds [30].

6. – Conclusion

The Pierre Auger Observatory is the first large scale UHECR detector to exploit the
power of the hybrid technique, opening up a new era in experimental UHECR physics.
The Observatory has been operating for more than 5 years and has now reached comple-
tion. Shower energies are determined in a way that minimises the dependence on models
of hadronic interaction and composition. The energy spectrum of UHECRs above EeV
energies was measured with vertical events. A steepening above 4.1019eV consistent with
the GZK effect is apparent. Data from both FD and SD have been used to put strin-
gent limits on the photon fraction in the UHECR flux. The sky has been shown to be
anisotropic in UHECRs and their sources extragalactic.
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RÉFÉRENCES

[1] Nagano M. and Watson A., Rev. Mod. Phys, 72 (2000) 689 ;
[2] Greisen K. , Phys. Rev. Lett., 16 (1966) 748, and Zatsepin G.T. and Kuzmin V.A., Sov.

Phys. JETP Lett. (Engl. Transl.), 4 (1966) 78 ;
[3] Takeda M. et al., Astropart. Phys., 19 (2003) 447 ;
[4] Abu-Zayyad et al. , Astropart. Phys., 23 (2005) 157 ;
[5] The Pierre Auger Collaboration, Nucl. Ins. and Meth., A523 (2004) 50 ;
[6] Facal San Luis B. et al., Proceeding of the 30th ICRC, Merida, Mexico, (2007) ;
[7] Bauleo P. et al, Proceeding of the 29th ICRC, Pune, India, (2005) ;
[8] Hillas M. , Proceedings of the 12th International Conference on CR’s, 3 (1971) ;
[9] Hersil J. et al, Phys. Rev. Lett., 6,22 (1961) 245 ;
[10] Di Giulio C. for the Pierre Auger Collaboration., Proceeding of the 31th ICRC,

Lodz, Poland, (2009) http ://fr.arxiv.org/abs/0906.2347v1, (6) ;
[11] Nagano M., Kobayakawa K., Sakaki N. and Ando K., Astropart.Phys., 22 (2004) 235 ;
[12] Ben-Zvi B. for the Pierre Auger Collaboration, Proceeding of the 31th ICRC, Lodz,

Poland, (2009) and http ://fr.arxiv.org/abs/0906.2189v1, (14) ;
[13] Dawson B. et al., Proceeding of the 30th ICRC, Merida, Mexico, (2007) 4425 ;
[14] Ghia P. et al. , Proceedings of 29th ICRC, 7 (2006) 167 ;
[15] Allard D. et al., Proceeding of the 29th ICRC, Pune, India, (2005) and The Pierre

Auger Collaboration, and Submitted to Nucl. Ins.and Meth., () ;
[16] The Pierre Auger Collaboration, Physical Review Letters, 2008 (2007) 061101 ;
[17] The Pierre Auger Collaboration, Science, 318 (2007) 938-943 and Astropart. Phys.,

29 (2008) 188-204 ;
[18] Hague D. for the Pierre Auger Collaboration., Proceeding of the 31th ICRC, Lodz,

Poland, (2009) ,http ://fr.arxiv.org/abs/0906.2347v1, (6) ;
[19] Véron-Cetty M.-P. and VéronP., Astron. Astrophys., 455 (2006) 773-777 ;
[20] The Pierre Auger Collaboration, Astropart. Phys. , 29 (2008) 243 ;
[21] The Pierre Auger Collaboration, Astropart. Phys. , 27 (2007) 155 ;
[22] The Pierre Auger Collaboration, Astropart. Phys. , 31 (2009) 399-406 ;
[23] Risse M.and Homola P., Mod. Phys. Lett., A22 (2007) 749 ;
[24] Shinozaki K. et al, Astrophys. J., 571 (2002) L117-L120 ;
[25] Rubtsov G. et al, Phys. Rev. D, 73 (2006) 063009 ;
[26] Glushkov A. V., JETP Lett. 85, 85 (2007) 163 ;
[27] Ave K. et al, Phys. Rev. Lett., 85 (2000) 2244 ;
[28] Ave K. et al, Phys. Rev. D, 65 (2002) 063007 ;
[29] Gelmini G. et al, astro-ph/0506128, () ;
[30] Semikoz D., Proceeding of the 30th ICRC, Merida, Mexico, (2007) ;


