# Study of the High Energy Cosmic Rays with the Auger experiment

Isabelle Lhenry-Yvon for the Auger Collaboration, IPN Orsay, IN2P3/CNRS

- The Pierre Auger Observatory for UHE Cosmic Rays
- Selection of Science results
- Future plans

#### Why do we study UHE Cosmic Rays?



- ◆ UHECRs: E>10<sup>18</sup> eV
- Center of mass energy larger than that of LHC
- → Galactic Magnetic Field can contain CRs
  up to 10<sup>17</sup>-10<sup>18</sup> eV: UHECRs are
  expected to be extra-galactic
- At the "end" of the spectrum: flux
   cutoff expected due to CR interaction on
   CMB photons (GZK effect, pion photo production)
- UHECRs are expected to come from "close" sources (GZK effect, < 100 Mpc) and to be marginally deflected by GMF: CR astronomy possible

#### How do we study UHE Cosmic Rays?



- CR flux very low at UHE:
  - + E>5 10<sup>17</sup> eV:  $1/\text{km}^2/\text{day}$
  - + E>10<sup>20</sup>: 1/km<sup>2</sup>/100 y
- Extensive air shower technique needed



- Measure lateral distribution by sampling of particles on the ground OR longitudinal profile with fluorescence telescopes
- Huge areas and very long term measurements required

## The Pierre Auger Observatory

Malargüe, Mendoza, Argentina (Built)

er office building

\*\*\*Google



15+2 countries, 785 institutions 7400 authors

#### The Southern Pierre Auger Observatory: A giant and hybrid detector (3000 km²)

Surface Detector (SD): 1600 water Cherenkov tanks, 100% duty cycle



Fluorescence Detector (FD):  $4 \times 6$  telescopes 13% duty cycle







#### Detector Calibration

#### **Ground-Array**





#### Fluorescence Telescopes





#### Goals of the Observatory

Detection with high statistics of cosmic rays with energies >10<sup>19</sup>eV.

- Spectrum
  - Requiers a good energy determination ≈ 20 30 %
- Arrival directions
  - → Angular resolution ≈1°
- Composition
  - → Fast electronics to measure details of the shower front (SD)
  - → Field of view to observe shower development (FD)



Science results

# Energy spectrum

#### Primary energy determination: SD

5D measures the lateral structure of the shower at ground



- \* Reconstruct geometry (arrival direction & impact point)
- + Fit particle lateral distribution (LDF)
- \* S(1000) [signal at 1000 m] is the Auger energy estimator ("ideal" distance depends on detectors spacing)

## Primary energy determination: FD

FD records the longitudinal profile of the shower during its development in atmosphere





One event seen by FD



- Reconstruct geometry (shower detector plane, SDP, and shower axis in SDP)
- Fit longitudinal shower profile
- Calorimetric measurement

$$\int \frac{dE}{dX} dX \sim E$$

#### Primary energy determination: SD+FD



Hybrid Events are used to calibrate the SD energy estimator, S(1000) (converted to the median zenith angle, 538) from the FD calorimetric energy



## Primary energy determination: SD+FD



Hybrid Events are used to calibrate the SD energy estimator, S(1000) (converted to the mediam zenith angle, 538) from the FD calorimetric energy



Energy resolution: statistical ≈ 19%

## FD Energy systematic uncertainty



#### Stereo events

- ⇒ reconstruction uncertainty
  - ▶ 10%, consistent with MC





Total FD E uncertainty: 22%

#### Spectrum: Flux suppression

Flux suppression at the highest energy

Significance does not depend on energy scale

Auger and HiRes compatible within 15%

Consistent with the uncertainties of the experiments



# Anisotropies of the highest energy cosmic rays

#### Arrival direction determination

#### Time of flight technique:

Dt among the arrival times of particles in different detectors give the arrival direction. Accuracy depends on timing precision and arrival time fluctuations

Angular resolution: angular radius that contains 68% of the showers coming from a point source.

Estimated on event-by-event basis

Verified with hybrid events (2 independent geometrical reconstructions)

 $E > 10^{19} \text{ eV}$ : > 6 tanks: < 1°





## Search for anisotropy of UHECRs

- Define a data set (adjusting minimum energy E)
- Define a tentative source catalogue (adjusting depth z)
- Count number of events k at less than angular distance  $\psi$  from a source (we call this a correlation)
- Calculate probability for such a number of correlations to occur by chance:

$$P(E, z, \psi) = \sum_{j=k}^{N(E)} {N(E) \choose j} p(z, \psi)^{j} (1 - p(z, \psi))^{N(E) - j}$$

where  $P(E,z,\psi)$  is the cumulative binomial probability and  $p(z,\psi)$  is the chance probability for a CR seen by Auger (exposure weighted) to fall within  $\psi^o$  of one of the sources in the catalogue

• Look for the minimum of  $P(E,z,\psi)$  as a function of E,z and  $\psi$ .

# Use Veron-Cetty & Veron 12th AGN Catalogue

#### AGNs are potential sources



A correlation was observed, then a prescription was set:

$$E_{th} = 57 \text{ EeV}$$
  $z_{max} = 0.017 \text{ } \psi = 3.2^{\circ}$ 

Test built to have 1% probability to incorrectly reject isotropy.

Test passed: 99% c.l. anisotropy

#### Whole data-set: 1 Jan 2004 - 31 Aug 2007



 $E_{th} = 57 \text{ EeV}$   $z_{max} = 0.017 \ \psi = 3.2^{\circ}$ 

20/27 events correlated (6 expected by chance)

10<sup>-5</sup> isotropic simulations have comparable departures under similar scan

Observed correlation shows that UHECR above ≈ 60 EeV are extra-galactic

#### Anisotropy properties and implications



The correlation with VCV does not prove that AGNs are the sources.

AGN distribution is as non-uniform as local matter distribution.

AGNs may be the tracers of the real sources (galaxies, starbust galaxies/GRBs, clusters...)

Or a subset of AGNs could be the sources

2 events within 3° from CEN A - Several events close to the SG plane Paucity of events from Virgo region

MORE DATA NEEDED

## Correlation strength as a function of Energy



Maximum signal occurs @ same energy where the flux is reduced by 50% with respect to an extrapolated power law

Supports evidence that the steepening in the CR spectrum is due to the GZK cutoff and not to acceleration limits at the sources

# Primary particle

#### Primary mass determination

# Lighter the primary, deeper the maximum



#### FD observable



Most sensitive observable to composition: X<sub>max</sub>
Accuracy: 20 g cm<sup>-2</sup>

#### SD observables





#### Composition from Xmax measurement



- P. Auger Observatory data suggest mixed composition at all energies
- → interpretation depends on hadronic interaction models
- → measurements are compatible within experimental uncertainties

#### Photon-hadron separation



Photon showers develop deeper and contain less muon

→ average separation in Xmax ~200 g cm2 is detectable!

#### Experimental limits and predictions

 $E > 10^{19} eV$ :



Astropart. Phys. 29 (2008) 234

Based on SD signal rise time
and shower curvature

FD: Astropart. Phys 27 (2007), 155 Based on Xmax

#### Topdown models severely constrained!

for reference to models & exp. data see

→ M. Risse, P. Homola, Mod. Phys. Lett. A 22 (2007) 749

# Auger as a neutrino detector



#### Auger as a neutrino detector



If an inclined neutrino produces a shower close to the detector: it will induce inclined but young shower

#### Auger as a neutrino detector



An earth skimming  $V_{\tau}$  (entering earth below horizon) can produce a  $\tau$  crossing the earth that can decay in a horizontal shower above the array

#### Tau neutrino diffuse flux: Auger limits

Existence of UHECRs implies existence of UHE neutrinos (either from interactions at the source or during propagation)

Suppression of UHECR flux + correlation with "nearby" X-galactic objects -> interaction of UHECR on CMB



# Future plans

# @ Auger South

"Normal" array completed (filling the holes...)

Long term operation started

New data to be released @ next ICRC

Completing the "enhancements" to decrease the threshold down to 0.1 EeV

#### **AMIGA**

85 detectors with spacing 430-750 m  $WCD + 30 \text{ m}^2$  buried  $\mu$  counters

#### HEAT

3 additional FD with FOV 30-60 at Coihueco Overlooking AMIGA







## Auger is going North



20000 km<sup>2</sup>
4000 stations, 2.2 km grid
+ 200 stations, 1.5 km grid (2000 km<sup>2</sup>)
7 FD sites (42 telescopes)





#### R&D Array fully funded 20 water Cherenkov tanks Deployment end of 2009





# FD limits in the EeV range

larger hybrid events sample

reconstruction quality cuts fiducial volume cuts cloud coverage correction

powerful statistical method

 $X_{max}$  as discrimination variable and cut at median of MC photon distribution (eff  $\equiv 0.5$ )



# FD limits in the EeV range

larger hybrid events sample

reconstruction quality cuts fiducial volume cuts cloud coverage correction



# FD limits in the EeV range

#### detector efficiency study

- detailed detector simulation (CORSIKA, FLUKA, QGSJET01)
- different inducing primaries (iron proton photon)



#### relative acceptance correction conservative approach

 $\mathbf{N}_{\gamma}$  observed candidates above cut (95% cl)

- ε min relative detector acceptance
- **f** photon candidate cut efficiency = 0.5
- $\epsilon_{_{\text{cl}}}$  pass the cloud check

$$F^{ul} = \frac{N_{\gamma \text{ c.l.}} \cdot 1/\epsilon_{min} \cdot 1/\epsilon_{min}}{N_{\text{total}} \cdot \epsilon_{cl}}$$

#### Constant Intensity Cut

- Isotropy of Cosmic Rays⇒ Integrated constant Intensity
- Constant Intensity ⇒ Constant Energy
- Relate S(1000) to  $S_{38}$  (signal at  $38^{\circ}$ )

38° is the average zenith angle of events

