

Ground-based gamma-ray astrophysics

arXiv:0712.0315v6 (July 2008)

Alessandro De Angelis, INAF INFN/Univ. Udine & IST

La Thuile 09

Limit of γ space telescopes

Peak eff. area of Fermi: 0.8 m²
 From strongest flare ever recorded of very high energy (VHE) γ-rays:
 1 photon / m² in 8 h above 200 GeV (PKS 2155, July 2006)

The strongest steady sources are > 1 order of magnitude weaker!

Besides: calorimeter depth \leq 10 X_0

⇒ VHE astrophysics (in the energy region above 100 GeV) can be done only at ground

Conventionally, VHE > 30(100) GeV

And what physics questions are answered by VHE photons?

- Do emission processes continue at the highest energies?
- Photons produced in hadronic cascades can be a signature of protons at an energy 10 times larger
 - => Cosmic Rays
- The highest energies can test fundamental physics in the most effective way
- ...

Ground detectors: EAS vs. IACT (Cherenkov)

- Observe particle showers induced in the atmosphere (28 X₀ at s.l.) by γ-rays
- EAS (Extensive Air Shower):
 detection of the charged particles
 in the shower
 (ARGO, MILAGRO)
- Cherenkov detectors (IACT): detection of the Cherenkov light from charged particles in the atmospheric showers

$$\theta_c \sim 1^\circ$$

e Threshold @ sl: 21 MeV

Maximum of a 1 TeV shower

- ~ 8 Km asl
- ~ 200 photons/m² in the visible Angular spread ~ 0.5°

Systems of Cherenkov telescopes Better bkgd reduction Better angular resolution Better energy resolution

THE BIG 4 IACT

A summary (oversimplified...)

_	GLAST	IACTs	EAS'
Energy	20MeV - 200GeV	100GeV – 50TeV	400GeV-100TeV
Energy res.	5-10%	15-25% (*)	~50%
Duty Cycle	80%	15%	>90%
FoV	$4\pi/5$	5deg x 5deg	$4\pi/6$
PSF	0.1 deg	0.07 deg	0.5 deg
Sensitivity (**)	1% Crab (1 GeV)	1% Crab (500 GeV)	0.5 Crab (5 TeV)

^(*) Decreases to 15% after cross-calibration with GLAST

Among IACTs:

- HESS 1 has a better sensitivity (8 mCrab) than MAGIC 1 (15 mCrab) at the TeV
- HESS 1 has a better space resolution (0.06 deg) than MAGIC 1 (0.10 deg)
- MAGIC has lower threshold: sees deeper (z < 1.2) Universe than HESS (z < 0.8)

^(**) Computed over one year for GLAST and the EAS, over 50 hours for the IACTs

Origin of γ rays from gravitational collapses SSC: a (minimal) standard model

SSC explains most observat

p^+ (>>TeV) $\pi^0 \qquad \gamma \gamma \text{ (TeV)}$ $\pi^- \qquad \pi^+$

hadronic acceleration

In the VHE region, $dN/dE \sim E^{-\Gamma}$ (Γ : spectral index)

HESS' galactic scan (2003-2007)

Best studied: the Crab Nebula

Source size @ 500 GeV < 1.6'

Crab seen also by MILAGRO Tibet AS-γ ARGO YBJ VERITAS...

Turn-over of SED starts to be visible at ~100 GeV MAGIC 2007, ApJ

IC peak at ~77 GeV

Crab pulsation (Science, November 2008)

- MAGIC detected pulsed γrays from the Crab above
 25 GeV, revealing a
 relatively high energy cutoff in the pulsed spectrum
- First observation of pulsed emission at O(10 GeV), first indication of a cutoff

G. Dubus

However, ~ 50% without counterpart

DM search

(Majorana WIMPs)

$$\frac{dN}{dE} = \frac{1}{4\pi} \underbrace{\frac{\langle \sigma v \rangle}{m_{DM}^2} \frac{dN_{\gamma}}{dE}}_{Particle\ Physics}$$

$$\chi\chi \to q\bar{q} \to n \times \gamma$$
 $\chi\chi \to \gamma\gamma(Z)$

$$\underbrace{\int_{\Delta\Omega-los} dl(\Omega) \rho_{DM}^2}_{Astrophysics}$$

Highest DM density candidate:

Galactic Center?

Close by (7.5 kpc)

Not extended

BUT:

- other γ -ray sources in the FoV
- => competing plausible scenarios
- halo core radius: extended vs point-like

γ-ray detection from the Galactic Center

- detection of γ-rays from GC by Cangaroo,
 Whipple, HESS, MAGIC
- σ_{source} < 3' (< 7 pc at GC)
 - hard E^{-2.21±0.09} spectrum fit to χ -annihilation continuum spectrum leads to: $M_{\chi} > 14$ TeV
 - other interpretations possible (probable)

Galactic Center: very crowded sky region, strong exp. evidence against cuspy profile

The spectrum is featurless!!!

Milky Way satellites Sagittarius, Draco, Willman1, Perseus, ...

- proximity (< 100 kpc)
- low baryonic content, no central BH (which may change the DM cusp)
- large M/L ratio

Active Galactic Nuclei: the sequence

Variability: M87 (the closest), Mkn 421,

Mkn501

- Two very well studied sources, highly variable
 - Monitoring from Whipple, Magic...
 - TeV-X Correlation
 - No orphan flares...
 - See neutrino detectors

Mkn421 TeV-

However, recently Fermi/HESS saw no correlation in PKS 2155 22

Rapid variability

Violation of the Lorentz-Invariance?

Light dispersion expected in some QG models, but interesting "per-se"

$$V = c [1 + \xi (E/E_{s1}) - \xi_2 (E/E_{s2})^2 + ...]$$

1st order
$$\Delta t \sim \xi \frac{E}{E_{QG}} \; \frac{z}{H_0} = \xi \frac{E}{E_{QG}} \; \frac{L}{c}$$

MAGIC Mkn 501, PLB08

 $E_{s1} \sim 0.03 M_{p}$ $E_{s1} > 0.02 M_{p}$

HESS PKS 2155, PRL08 $E_{s1} > 0.06 M_P$

Whipple 1999, PRL 83(99)2108 $E_{s1} > 0.005 M_P$

GRB X-ray limits:

 $E_{s1} > 0.11 M_P$ (Fermi, but...)

... but in most scenarios $\Delta t \sim (E/E_{s\alpha})^{\alpha}$, $\alpha > 1$

- ▶ VHE gamma rays are the best pro
- ► Mrk 501: $E_{s2} > 3.10^{-9} M_P$, $\alpha = 2$

Interpretation of the results on rapid variability

- The most likely interpretation is that the delay is due to physics at the source
 - By the way, a puzzle for astrophysicists
- However
 - We are sensitive to effects at the Planck mass scale
 - More observations of flares will clarify the situation
- In any case: amazing to see light traveling for half a billion light years and keeping a 2 minutes delay

Going far away...

Propagation of γ -rays

- For γ -rays, relevant background component is optical/infrared (EBL)
- different models for EBL: minimum density given by cosmology/star formation

Are our AGN observations consistent with theory?

Selection bias? New physics?

Measured spectra affected by attenuation in the EBL:

The most distant: MAGIC 3C 279 (z=0.54)

Could it be seen?

- Explanations go from the standard ones
 - very hard emission mechanisms with intrinsic slope < 1.5 (Stecker 2008)
 - Very low EBL
- to possible evidence for new physics
 - Interaction with a new light "axion"? (DA, Roncadelli & MAnsutti [DARMA], PLB2008, PRD2008)
 - Axion emission (Hooper et al., PRD2008)

We are (maybe) making two extraordinary claims

- A possible relation between arrival time and energy
- A signal from sources far away hardly compatible with EBL
- We should keep in mind that
 - Extraordinary claims require extraordinary evidence
 - New Scientist, SciAm blog/news, ..., and then?
 - Claims must be followed up
 - If we see this in such sources, what else do we expect?
 - Fundamental implications of unexpected findings?
 - Are we seeing a part of the same big picture?

GRBs Another probe

- Interesting for astrophysical reasons, for propagation physics, for rapid variability-LIV
- MAGIC is the best instrument, due to its fast movement & low threshold
 - MAGIC is in the GCN Network
 - GRB alert active since Apr 2005
- Also MILAGRO...

No VHE γ emission from GRB positively detected yet... (all other observed GRB very short or at very high z)

Summary

- VHE photons (often traveling through large distances) are a powerful probe of fundamental physics under extreme conditions
 - What better than a crash test to break a theory?
- Observation of X/γ rays gives an exciting view of the VHE universe, thanks to IACTs (>70 new VHE sources discovered in the last 5 years, and growing...); many sources,
 - Transparency of the Universe? New physics?
 - Often unknown
 - A progress comparable with the one drawn by EGRET
 - Sometimes behaving in an unexpected way
 - Rapid variability: new physics?

- Just started... and in 2009/2011:
 - factor 2-3 improvement by HESS2, MAGIC2, VERITAS
 - After that, a mix CTA+HAWC (with possibly space for a new concept)

Comparison between the "big 4"

Instrument		Long.		Tels.	Tel. Area (m^2)	$\begin{array}{c} {\rm Total~A.} \\ {\rm (m^2)} \end{array}$			Sensitivity (% Crab)
H.E.S.S.		16			107	428			0.7
VERITAS MAGIC	$\frac{32}{29}$	$-111 \\ 18$	$\frac{1275}{2225}$	4 1	$\frac{106}{236}$	424 236 (472)(*)		$0.1 \\ 0.05$	$\frac{1}{1.6(0.8)}$
CANGAROO-III	-31	137	160	3	57.3	172	4	0.4	15