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This is just one talk!

@ Baryonic/SM Matter @ Baryonic/SM Talks
@© Dark Matter € Dark Matter Talks

8676

I'm going to just give one persons perspective (not
all inclusive )
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Motivations for dark
matter theory

@ Pre 2008: Theory (problem) driven

@ Hierarchy problem: SUSY + R parity, Little
Higgs + T parity, etc.

@ Strong CP problem: axions
@ Both: axinos

@ 2008 - present: Hint (anomaly) driven
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Hints of high energy ete

@ PAMELA ftells us that there is a primary
source of 10-100 GeV positrons within 1kpc

@ The WMAP Haze suggests us that there is
a new population of 10-100 GeV positrons in
the galactic center (5°-15°)

® ATIC indicates an excess of ete at
400-700GeV

® EGRET allows for an excess of ICS photons
from the galactic center
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The three ingredients o explain
PAMELA®

*Dark matter could also decay instead of annihilating
@ Hard lepton spectrum

@ Few/no anti-protons
@ Large cross section (much larger than thermal)

@ All these can be explained by insisting that the
dark matter is charged under Ggark Which is broken
at the GeV scale, weakly mixed with the SM

@ Other possibilities with similar structure [e.g.,
gauge boson coupled to lepton number (ox and poppitz 08),
GXion (Nomura and Thaler '08)] have S|m|lar Pheno



New forces = new annihilation modes




New forces = new annihilation modes

@ "WIMP Mirac re (sigma ~ 1/M?)

@ No antiproton emarics

@ Hard positro ly boosted s



New forces = new annihilation modes

@ "WIMP Miracle” works as before (sigma ~ 1/M?)
@ No antiprotons comes from kinematics

@ Hard positrons come from highly boosted &



New forces = new annihilation modes

Background ——
m, =50 GeV, pP<olvi>=0.48 x 102 GeVZ em® s ——
m, = 100 GeV, p,<olvi> = 1.60 x 10%° Gev® em™® s
m, = 250 GeV, p,<olvi> = 8.26 x 10%° GeV® cm™® s
m,= 500 GeV, p(,2 N
m, = 800 GeV, p, <olvi> = 77.44 x 10%° GeV2 em s - - -
~“HEAT Data':- -+- %

Direct Channel
Merritt éa =0.17)

Energy (GeV)
(c)Direct decay channel, v4 = 35 km/s

Cholis, Goodenough, NW, arxiv:0802.2922

Pre-PAMELA
@ "WIMP Miracle” works as before (sigma ~ 1/M?)

@ No antiprotons comes from kinematics

@ Hard positrons come from highly boosted &



New forces = new annihilation modes

Background ——— — m,=800 GeV, BF = 280
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A Cross section
conundrum

@ If the cross section were high
enough to yield PAMELA/ATIC/Haze,
DM would be depleted in the early
universe
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Sommerfeld Enhancement
High velocity

If particles interact via a “long range” force, cross sections
can be much larger than the perturbative cross section

If these signals arise from thermal dark matter,
dark matter must have a long range force

m;l Z ((XMDM)_l

Arkani-Hamed, Finkbeiner, Slatyer, NW, ‘08
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PAMELA and the Haze

@ PAMELA sees an excess of positrons in 10-100 GeV

@ If its coming from DM, there should be ~100x more
in the GC

@ These particles would synchrofron radiate in the
22-90 GHz range

@ This is precisely the original interpretation of the
Haze (Finkbeiner, astro-ph/0409027)

@ Essentially any annihilating DM model that explains
PAMELA will naturally explain the Haze as well



Fermi/GLAST Signals

Energy (GeV)

— m,=1.0 TeV, BF =320
------ m, = 400 GeV, BF = 60 XDM e*e” Channel

------- m, =150 GeV, BF = 10 6 Inverse-COmP'l'On

. eorETOu Scatter photons
in GC should be

robust signature
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Also many opportunities for ACTs from final
state radiation from dwarfs (in progress)
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New Collider Pheno: Lepton Jets

@ Production of Ggark States, yield boosted, highly
collimated leptons (“lepton jets)

Arkani-Hamed, NW, ‘08; Baumgart, Cheung, Ruderman, Wang, Yavin, * 09; Bai, Han ‘09

SM leptons

10°7
T ~ (€’ i

invariant mass ~GeV T

)%cm



leptons

)

\ " leptons

Baumgart, Cheung, Ruderman, Wang, Yavin, * 09




@ Missing Energy Signatures no longer key
signal of DM sector

@ Direct production of new dark forces -
reexamination of low energy e+e- data (being
done)



Direct Detection and
DAMA
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Consider vector interaction

X1UMY1A“ X1UMX2A“

Vector interaction => multiple DM states; for Sommerfeld,
these states must be kinematically accessible

oo MXU2



Natural scales of splittings

A

® If the force is a non-Abelian gauge
symmetry, different dark matter states
are split from one another

5%CWTLANM6V

For SE require § < M, v?



“Inelastic” dark matter

D.Tucker-Smith, NW, Phys.Rev.D64:043502,2001;Phys.Rev.D72:063509,2005

® DM-nucleus scattering must be inelastic

® If dark matter can only scatter off of a nucleus

by transitioning tfo an excited state (100 keV), the
Kinematics are changed dramatically
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® Such a scenario

@ Favors heavy targets (Iodine) over light
ones (Germanium)

@ Enhances modulation (typically 30%, but
up to 100%)

@ Depletes low energy events

@ Together these effects allow a positive
DAMA signal consistent with other results
(CDMS, XENONIO, ZEPLIN, CRESST, KIMS)



on the spectrum

Xenon spectrum
Rate (cpd/kg/keV)
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Down-scattering possible

@ Relic populations of excited states are
possible

@ Can be long-lived - see down-scattering
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Historical Perspective
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Evidence of Heavy-Neutrino Emission in Beta Decay

J. J. Simpson
Department of Physics and Guelph-Waterloo Program for Graduate Work in Physics, University of Guelph,
Guelph, Ontario N1G 2W 1, Canada
(Received 18 February 1985)
The observation of a distortion of the B spectrum of tritium is reported. This distortion is con-
sistent with the emission of a neutrino of mass about 17.1 keV and a mixing probability of 3%.

PACS numbers: 23.40.Bw, 14.60.Gh, 27.10.+h

There is considerable interest today in whether neu- on the Mo K« x rays. The x rays which were incident
trinos have mass or not. Since it has been known for upon the detector through the slot in an x-ray chopper
some time that the energy spectra of B particles will wheel intermittently with a period of a minute were

@ Dark Matter is as neutrino physics was (maybe)

@ Suggestions and hints of new physics

@ WIill become clearer with time

@ Remember: it was the “unreliable” astrophysical
hints that ended up being righf!
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@ A wide range of hints from various sources compel us
to rethink DM

@ One simple assumption - that of a GeV dark force -
naturally explains most of the astrophysical anomalies

@ If such a force is a vector boson, the presence of
additional states naturally can explain DAMA (via
inelastic DM) and INTEGRAL (via exciting DM)

@ Such a model has dramatic collider signals (“lepton
jets”), gamma ray signals, and dark matter direct
detection signals (inelastic scattering)

® Data driven - will know more soon!






Kamionkowski + Profumo
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is the mass of a light exchanged particle. At smaller
velocities, the 1/v enhancement saturates at m,/mg. Our
bounds can therefore be written for this model, roughly
speaking, by including a factor max[1, (c/v)(my/m,)],
with v/c evaluated from Eq. (1), on the right-hand sides

of our upper limits [Eqgs. (6) and (7)]. Thus, for example, .
for our canonical values [m, = TeV,M, = Mg, z. = 200, VQIOC | .I.y

and B, = 1], our limits are unaltered for my =< 6 keV.

For larger m, they are reduced accordingly. For example,

the CMB bound [Eq. (7)] is weakened to o =< 1 (for our
canonical values) for my = 26 GeV.

More simply phrased as maximum
boost. I find (using their
numbers) at 1 TeV BFmax = 4000




Explaining DAMA with High Masses
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Limits from galactic center

% Inferes’ring limits Fr‘om bremmed PhO"'Ons (Beacom, Bell, Bertone, ‘04; Bell & Jacques ‘08; Bertone, Cirelli, Strumia,

Taoso, ‘08; Bergstrom, Bertone, Bringmann, Edsjo, Taoso, ‘'08; Meade, Papucci, Volansky, ‘09; Mardon, Nomura, Stolarski, Thaler, '09)

@ Limits rely on knowing density and velocity in GC - can change a lot with baryons!
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Governato et al, 2006

NB: Many simulation uncertainties (matching bulge with MW, other
numerical issues involving baryons)

Romano-Diaz, Schlosman, Hoffman, Heller, '08






