Cosmic ray studies with the PAMELA space experiment

Roberta Sparvoli

University of Rome "Tor Vergata" and INFN

PAMELA science

PAMELA

PAMELA is a Space Observatory @ 1AU

- Search for dark matter
- •Search for primordial antimatter
- ... but also:
- •Study of cosmic-ray origin and propagation
- •Study of solar physics and solar modulation
- •Study of terrestrial magnetosphere

+ Roberta Sparvoli + March 2nd, 2009 + La Thuile

Tha PAMELA collaboration

loffe Physico-Technical

+ Roberta Sparvoli + March 2nd, 2009 + La Thuile

KTH, Stockholm

Everything starts with ...

- •Antiprotons in the cosmic radiation are expected as "secondary" products of interactions of the primary cosmic radiation, principally protons, with the ambient interstellar medium (ISM).
- •The first positive measurements [Golden 79,Bogomolov 90, Buffington 82] reported higher antiproton fluxes than predicted by contemporary models of cosmic ray transport.
- Many different theories to justify these data were proposed at that time

Golden et al. (1984; **open circle**), Bogomolov et al. (1987, 1990; **open triangle**), Buffington et al. (1981; **open square**)

Cosmic-ray Antimatter from Dark Matter annihilation

Annihilation of relic Weakly Interacting
Massive Particles (WIMPs) gravitationally
confined in the galactic halo

- → Distortion of antiproton and positron spectra from purely secondary production
- A plausible dark matter candidate is neutralino (χ), the lightest SUSY Particle (LSP).

Most likely processes:

- $\chi\chi \rightarrow qq \rightarrow$ hadrons \rightarrow anti-p, e⁺,...
- $\chi\chi \rightarrow W^+W^-, Z^0Z^0, \dots \rightarrow e^+, \dots$
 - \Rightarrow positron peak Ee+~M χ /2
 - \Rightarrow positron continuum Ee+ \sim M χ /20
- Another possible candidate is the lightest Kalusa-Klein Particle (LKP): B⁽¹⁾

Fermionic final states no longer suppressed:

• $B^{(1)}B^{(1)} \rightarrow e^+e^$ direct decay \Rightarrow positron peak Ee+ ~ $M_{B(1)}$

Charge-dependent solar modulation Asaoka Y. Et al. 2002 P/P ratio Kinetic Energy 1999/2000

CR antimatter

Experimental scenario before PAMELA

$$CR + ISM \rightarrow p-bar + ...$$

- Propagation dominated by nuclear interactions
- •Kinematical threshold: $E_{th} \sim 5.6$ for the reaction $pp \rightarrow \overline{p}ppp$

$$CR + ISM \rightarrow \pi^{\pm} + x \rightarrow \mu^{\pm} + x \rightarrow e^{\pm} + x$$

 $CR + ISM \rightarrow \pi^{0} + x \rightarrow \gamma\gamma \rightarrow e^{\pm}$

- Propagation dominated by energy losses (inverse Compton & synchrotron radiation)
- Local origin (@100GeV 90% from <2kpc)

PAMELA detectors

TOF (S1)

CARDI

Main requirements → high-sensitivity antiparticle identification and precise momentum measure

GF: 21.5 cm² sr Mass: 470 kg

Size: 130x70x70 cm³ Power Budget: 360W

<u>Time-Of-Flight</u> plastic scintillators + PMT:

- Trigger
- Albedo rejection;
- Mass identification up to 1 GeV;
- Charge identification from dE/dX

Electromagnetic calorimeter

W/Si sampling (16.3 X0, 0.6 λl)

- Discrimination e+ / p, anti-p / e⁻ (shower topology)
- Direct E measurement for e

Neutron detector

plastic scintillators + PMT:

- High-energy e/h discrimination

TOF (S2) ANTICOINCIDENCE TOF (S3) CALORIMETER NEUTRON DETECTOR

Spectrometer

microstrip silicon tracking system + permanent magnet It provides:

- *Magnetic rigidity* → R = pc/Ze
- Charge sign
- Charge value from dE/dx
- + Roberta Sparvoli + March 2nd, 2009 + La Thuile

The Resurs DK-1 spacecraft

- Multi-spectral remote sensing of earth's surface -near-real-time high-quality images
- Built by the Space factory TsSKB Progress in Samara (Russia)
- Operational orbit parameters:
 - -inclination ~70°
 - -altitude ~ 360-600 km (elliptical)
- Active life >3 years
- Data transmitted via Very high-speed Radio Link (VRL)

PAMELA design performance

- → Unprecedented statistics and new energy range for cosmic ray physics (e.g. contemporary antiproton and positron maximum energy ~ 40 GeV)
- → Simultaneous measurements of many species

PAMELA milestones

Launch from Baikonur → June 15th 2006, 0800 UTC.

'First light' → June 21st 2006, 0300 UTC.

- Detectors operated as expected after launch
- Different trigger and hardware configurations evaluated

→ PAMELA in continuous data-taking mode since commissioning phase ended on July 11th 2006

Trigger rate* ~25Hz

Fraction of live time* ~ 75%

Event size (compressed mode) ~ 5kB

25 Hz x 5 kB/ev → ~ 10 GB/day

(*outside radiation belts)

Till May 2008:

~500 days of data taking

~10 TByte of raw data downlinked

~12•10⁸ triggers recorded and analysed (Data from May till now under analysis)

Antiprotons

High-energy antiproton analysis

- Analyzed data July 2006 February 2008 (~500 days)
- Collected triggers ~108
- Identified $\sim 10~10^6$ protons and $\sim 1~10^3$ antiprotons between 1.5 and 100 GeV (100 p-bar above 20 GeV)
- Antiproton/proton identification:
 - rigidity $(R) \rightarrow SPE$
 - |Z|=1 (dE/dx vs R) \rightarrow SPE&ToF
 - β vs R consistent with $M_p \rightarrow ToF$
 - p-bar/p separation (charge sign) \rightarrow SPE
 - p-bar/e⁻ (and p/e⁺) separation \rightarrow CALO
- Dominant background → **spillover protons**:
 - finite deflection resolution of the SPE ⇒ wrong assignment of charge-sign @ high energy
 - proton spectrum harder than positron \Rightarrow p/p-bar increase for increasing energy (10³ @1GV 10⁴ @100GV)
 - → Required strong SPE selection

Antiproton identification

Proton-spillover background

Electrons: efficiently removed by CALO

Pions (from interactions in dome): about 3% in the pbar sample

PAMELA: Antiproton-to-proton ratio

Positrons

High-energy positron analysis

- Analyzed data July 2006 February 2008 (~500 days)
- Collected triggers ~108
- Identified $\sim 150 \ 10^3$ electrons and $\sim 9 \ 10^3$ positrons between
- 1.5 and 100 GeV (180 positrons above 20 GeV)
- Electron/positron identification:
 - rigidity $(R) \rightarrow SPE$
 - $|Z| = 1 (dE/dx = MIP) \rightarrow SPE\&ToF$
 - $\beta=1 \rightarrow \text{ToF}$
 - e^{-}/e^{+} separation (charge sign) \rightarrow SPE
 - e^+/p (and e^-/p -bar) separation \rightarrow CALO
- Dominant background → interacting protons:
 - fluctuations in hadronic shower development $\Rightarrow \pi_0 \rightarrow \gamma \gamma$ might mimic pure em showers
 - proton spectrum harder than positron \Rightarrow p/e⁺ increase for increasing energy (10³ @1GV 10⁴ @100GV)

→ Required strong CALO selection

Positron identification with CALO

- Identification based on:
 - Shower topology (lateral and longitudinal profile, shower starting point)
 - Total detected energy (energy-rigidity match)
- Analysis key points:
 - Tuning/check of selection criteria with:
 - test-beam data
 - simulation
 - flight data \rightarrow dE/dx from SPE & neutron yield from ND
 - Selection of pure proton sample from flight data ("pre-sampler" method):
 - Background-suppression method
 - Background-estimation method

51 GV positron

Final results make <u>NO USE</u> of test-beam and/or simulation calibrations.

The measurement is based only on flight data

with the <u>background-estimation</u> method

Positron identification

Positron identification

Fraction of charge released along the calorimeter track

Positron identification

Fraction of charge released along the calorimeter track

Constraints on:

Energy-momentum match

Shower starting-point

Test beam data

Momentum: 50GeV/c

Energy loss in silicon tracker detectors:

$$-\frac{dE}{dx} = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{\text{max}}}{I^2} \right] - \beta^2 \left(\frac{\delta(\beta \gamma)}{2} \right)$$

Relativistic rise

- Top: positive (mostly p) and negative events (mostly e⁻)
- Bottom: positive events identified as p and e⁺ by trasversal profile method

The "pre-sampler" method

Selection of a pure sample of protons from flight data

CALORIMETER: 22 W planes: 16.3 X₀

Only 2% of electrons and positrons do not interact in the first 2 CALO planes

Proton background evaluation

Rigidity: 20-28 GV

Fraction of charge released along the calorimeter track (left, hit, right)

Constraints on:

Energy-momentum match

Shower starting-point

Proton background evaluation

Rigidity: 28-42 GV

Fraction of charge released along the calorimeter track (left, hit, right)

Constraints on:

Energy-momentum match

Shower starting-point

Positron selection with calorimeter

PAMELA: Positron fraction

astro-ph 0810.4995 Accepted by NATURE

PAMELA antimatter data:

Do we have any antimatter excess in CRs?

Antiproton-to-proton ratio

• Solar modulation: spherical model (ϕ =550MV)

Secondary Production Models

$$CR + ISM \rightarrow p-bar + ...$$

Antiproton-to-proton ratio

Secondary Production Models

$$CR + ISM \rightarrow p-bar + ...$$

No evidence for any antiproton excess

Positron fraction

Secondary Production Models

$$CR + ISM \rightarrow \pi^{\pm} + ... \rightarrow \mu^{\pm} + ... \rightarrow e^{\pm} + ...$$

 $CR + ISM \rightarrow \pi^{0} + ... \rightarrow \gamma\gamma \rightarrow e^{\pm}$

Positron fraction

Secondary Production Models

$$CR + ISM \rightarrow \pi^{\pm} + ... \rightarrow \mu^{\pm} + ... \rightarrow e^{\pm} + ...$$

 $CR + ISM \rightarrow \pi^{0} + ... \rightarrow \gamma\gamma \rightarrow e^{\pm}$

Positron fraction

Secondary Production Models

$$CR + ISM \rightarrow \pi^{\pm} + ... \rightarrow \mu^{\pm} + ... \rightarrow e^{\pm} + ...$$

 $CR + ISM \rightarrow \pi^{0} + ... \rightarrow \gamma\gamma \rightarrow e^{\pm}$

Positron fraction

Secondary Production Models

Quite robust evidence for a positron excess

Primary positron sources

Dark Matter

- e⁺ yield depend on the dominant decay channel
 - \rightarrow LSPs (SUSY) seem <u>disfavored</u> due to suppression of e⁺e⁻ final states
 - → low yield (relative to p-bar)
 - → soft spectrum from cascade decays
 - →**LKPs** seem <u>favored</u> because can annihilate directly in e⁺e⁻
 - → high yield (relative to p-bar)
 - \rightarrow hard spectrum with pronounced cutoff @ M_{LKP} (>300 GeV)
- Boost factor required to have a sizable e⁺ signal
 - →NB: constraints from p-bar data!!
- •Other hypothesys possible and under study (i.e. Minimal DM Model, ...)

Which DM spectra can fit the data?

E.g. a DM with: -mass $M_{\rm DM} = 150\,{\rm GeV}$ -annihilation DM DM $\rightarrow W^+W^-$

(a possible SuperSymmetric candidate: wino)

Positrons:

Anti-protons:

[insisting on Winos

Results

Which DM spectra can fit the data?

E.g. a DM with: -mass $M_{\rm DM} = 10\,{\rm TeV}$

-annihilation DM DM $\rightarrow W^+W^-$

but...: -boost $B = 2 \cdot 10^4$

Positrons:

Anti-protons:

Which DM spectra can fit the data?

Minimal DM: -mass $M_{
m DM}=9.7\,{
m TeV}$ E.g.

et al. 2006]

-annihilation DM DM $\rightarrow W^+W^-$

-boost $B \simeq 30$

Positrons:

Anti-protons:

Results

Which DM spectra can fit the data?

Model-independent results:

fit to PAMELA positrons + anti-protons

- (1) annihilate into leptons (e.g. $\mu^+\mu^-$) or
- (2) annihilate into W^+W^- with mass $\gtrsim 10 \, {\rm TeV}$

Primary positron sources

Astrophysical processes

- Local **pulsars** are well-known sites of e^+e^- pair production (the spinning B of the pulsars strips e- that emit gammas then converting to pairs trapped in the cloud, accelerated and then escaping at the Poles):
 - → they can individually and/or coherently contribute to the e⁺e⁻ galactic flux and explain the PAMELA e⁺ excess (both spectral feature and intensity)
 - → No fine tuning required
 - → if one or few nearby pulsars dominate, anisotropy could be detected in the angular distribution
 - → possibility to discriminate between pulsar and DM origin of e⁺ excess

Astrophysical explanation?

Or perhaps it's just a young, nearby pulsar...

'Mechanism': the spinning \vec{B} of the pulsar strips e^- that emit γ that make production of e^\pm pairs that are trapped in the cloud, further accelerated and later released at $\tau \sim 0 \to 10^5$ yr.

Must be young (T < 10⁵ yr) and nearby (< 1 kpc); if not: too much diffusion, low energy, too low flux.

Predicted flux: $\Phi_{e^{\pm}} \approx E^{-p} \exp(E/E_c)$ with $p \approx 2$ and $E_c \sim \text{many TeV}$

Try the fit with known nearby pulsars and diffuse mature pulsars:

PAMELA positron excess might be connected with ATIC electron+positron structures

PAMELA is also studying ...

Galactic cosmic-ray origin & propagation

Solar physics

Magnetospheric physics

Work in progress!! No time to talk about it ..

Conclusions (I)

- PAMELA is the first space experiment which is measuring the <u>antiproton</u> and <u>positron</u> cosmic-ray components to the high energies (>100GeV) with an unprecedented statistical precision
 - → search for evidence of DM candidates
 - → "direct" measurement of particle acceleration in astrophysical sources (pulsars?)

• Furthermore:

- PAMELA is providing measurements on low-mass elemental (and isotopical) spectra with an unprecedented statistical precision
 - → study of particle origin and propagation in the interstellar medium
- PAMELA is able to measure the high energy tail of solar particles.
- PAMELA is measuring composition and spectra of <u>trapped and re-entrant albedo</u> <u>particles</u> in the Earth magnetosphere

Very interesting results on the positron side: Evidence of new physics?

Conclusions (II)

PAMELA positron fraction alone insufficient to understand the origin of positron excess

Additional experimental data will be provided by PAMELA:

- e⁺ fraction @ higher energy (up to 300 GeV)
- individual e⁻ and e⁺ spectra
- anisotropy (...maybe)
- high energy e⁺+e⁻ spectrum (up to 2 TV)

Complementary information from:

- gamma rays
- neutrinos

Very exciting time when LHC starts to work!

Back up slides

H and He spectra

Proton flux

Secondary nuclei

Antiprotons

Antiprotons results can be used to constraint propagation models

H and He spectra

H and He spectra

Proton-spillover background

• magnetic field intensity along the trajectory

Proton-spillover background

