Les Rencontres de Physique de la Vallée d'Aoste, La Thuile, March 5, 2009

Precision Determination of the Top Mass

L. Brigliadori University of Bologna & INFN

On behalf of the CDF and DØ Collaborations

- The Top Quark and its Mass.
- Experimental Environment.
- Measurement Strategies.
- Most Recent Results.
- Summary and Conclusions.

University of Bologna & INFN

March 5, 2009

Experimental Environment

Collider Run II Integrated Luminosity

- Top produced only at Fermilab Tevatron
- $p\bar{p}$ collisions at 1.96 TeV (Run II, since 2001).
- The machine is performing well Luminosity record (January '09):
 3.5 · 10³² cm⁻² s⁻¹
- About 6 fb⁻¹ delivered to experiments. Run II goal $4 \div 8$ fb⁻¹.
- CDF and DØ have $\sim 5 \, \text{fb}^{-1}$ recorded on tape.

Present results use up to $\sim 3\,{
m fb}^{-1}$ of data

Luca Brigliadori University of Bologna & INFN

University of Bologna & INFN

Top Mass Challenges

- $\sigma_{t\bar{t}} \, / \, \sigma_{inel} \simeq 10^{-10} \, !!!$... Event Selection :
 - b-tagging algorithms.
 - High E_T and central $(|\eta| \leq 2)$ Jets.
 - Lepton Id (Dilepton, Lepton + jets).
- **Reconstruction :**
 - Measure "Jets" and not partons

Need corrections to obtain parton energy

- \Rightarrow Jet Energy Scale. $\sigma_{JES}/JES \approx 3\%$ to 6%
- \Rightarrow dominant contribution to $\delta M_{top}(syst)$
- Jets-to-partons assignments

Which jet comes from which particle? Combinatoric problem!

- Undetected ν 's (Dilepton, Lepton + jets).

Need assumptions. Multiple solutions.

Luca Brigliadori University of Bologna & INFN

• Matrix Element (ME)

- Define the probability, P_{ev} , that the *observed* kinematics, \vec{y} , arise from possible signal or bkg kinematics \vec{x} at parton level :
 - * $d\sigma(\vec{x})$ LO differential x-section of a final state \vec{x} at parton level. Depending on M_{top} for $t\bar{t}$ events, but not for bkg.
 - * $\mathcal{W}(\vec{y}, \vec{x})$ "Transfer function", i.e. probability to measure the observed set of variables \vec{y} , given \vec{x} at parton level. Depends on JES.
 - * $f_{t\bar{t}}$ Fraction of signal events expected in the data.

- Maximize $\mathcal{L}_{sample} \propto \prod_{events} P_{ev}(\vec{y}, f_{t\bar{t}}, M_{top})$ evaluated for observed data

• Template Method

- Consider a set of observables, x, sensitive to M_{top}.
 Evaluate and plot the set for each event
 ⇒ "Templates"
- Maximize a likelihood where *observed* distributions are compared to expectations for different M_{top} and signal fractions, $f_{t\bar{t}}$.

$$\mathcal{L}_{ ext{sample}} \propto \prod_{events} \prod_{ec{x}} \mathcal{L}_{ ext{shape}}(x_i | f_{tar{t}}, M_{top})$$

Luca Brigliadori University of Bologna & INFN

The cleanest sample.... The smallest statistics...

Typical Event Selection

- 2 oppositely charged leptons (e, μ), $E_T \ge 15$ GeV.
- 2 energetic jets, $E_T \geq 20$ GeV.
- ≥ 0 or ≥ 1 b-tag
- Large H_T (Total transverse energy)

Main backgrounds

- Diboson: ZZ, WW, WW
- Drell-Yan
- W + jets (fake leptons)

- S/B between 2 and 4 (≈ 10 with *b*-tag)
- Small combinatoric problem (only 2 parton-jet assignments)
- Underconstrained kinematics (2 undetected ν)

m_{ton}=170GeV

- **DØ**, Matrix Element, 2.8 fb $^{-1}$
 - $e + \mu$ channel only ($BR \approx 2.5\%$).

 - 30 events selected from Run IIa (1.1 fb⁻¹),
 68 from Run IIb (1.7 fb⁻¹).
 - Combine Run IIa and Run IIb measurements to obtain :

 $M_{top} = [172.9 \ \pm 3.6 \ (stat) \ \pm 2.3 \ (syst)] \, {
m GeV} \ \delta M_{top}/M_{top} \simeq 2.5\%$

- Combine with result from Template Method by "Neutrino Weighting Algorithm" (1 fb⁻¹)
 - NWA uses templates built by an event weight obtained by integration over assumptions done to solve underconstrained kinematics.

 $M_{top} = [174.4 \pm 3.2 \, (stat) \pm 2.1 \, (syst)] \, {
m GeV} \ \delta M_{top}/M_{top} \simeq 2.2\%$

Luca Brigliadori University of Bologna & INFN

Reasonable Bkg, Good Statistics.... The Golden Channel!

Typical Event Selection

- \equiv 1 charged lepton (e, μ), $E_T \geq$ 20 GeV.
- \geq 4 energetic jets, $E_T \geq$ 20 GeV.
- ≥ 1 b-tag
- Large $\not\!\!\!E_T \ (\geq 20 \ {\rm GeV})$

Main backgrounds

- $W + \text{HF}(W + b\overline{b}, W + c\overline{c}, W + c)$
- W + jets (fake *b*-tags)
- Multi-Jets (fake leptons)

- S/B between 3 and 10 (with 1 or ≥ 2 b-tags)
- Jets partons assignment ambiguity (24 possibilities, eventually reduced by *b*-tags)
- Well reconstructed kinematic (but \vec{p}_z^{ν} ambiguity)

• CDF, Matrix Element, $3.2 \, \text{fb}^{-1}$

- 578 events selected (1 e or μ , \equiv 4 Jets, large $\not\!\!\!E_T$, \geq 1 b-tag)
- For each event evaluate ME-based probability as a sum over parton-jet combinations

$$P_{ev} = rac{1}{N} \sum_{i=1}^{24} w_i \cdot P_i(ec{y} \,|\, M_{top},\, JES)$$

- Average bkg contribution subtracted.
- w_i : *b*-tag probability of the assumed parton-jet association.
- Dependence on JES given by Transfer Functions $\mathcal{W}(\vec{y}, \vec{x})$
- Possible simultaneous JES calibration by jets assigned to W boson.

Luca Brigliadori University of Bologna & INFN

10

$$M_{top} = [172.1 \ \pm 0.9 \, (stat) \ \pm 1.3 \, (syst)] \, {
m GeV} \ \delta M_{top} / M_{top} \simeq 0.9\%$$

Best individual measurement from CDF

• DØ Matrix Element, 2.2 fb $^{-1}$

- Event selection totally analogous to CDF's.
 220 events from Run IIa (1.0 fb⁻¹),
 271 from Run IIb (1.2 fb⁻¹)
- Use NN-based *b*-tagger.
- Similar event probability, but Bkg ME explicitly calculated

$$P_{ev} = f_{t\bar{t}} \cdot P_{ev}^{t\bar{t}}(M_{top}) + (1 - f_{t\bar{t}}) \cdot P_{ev}^{bkg}$$

Run IIa

$$M_{top} = [171.5 \pm 1.5 (stat) \pm 1.5 (syst)] \, {
m GeV}$$

Run IIb

$$M_{top} = [173.0 \pm 1.3 \, (stat) \pm 1.7 \, (syst)] \, {
m GeV}$$

Combined ⇒ **Best** DØ measurement

 $M_{top} = [172.2 \, \pm 1.0 \, (stat) \, \pm 1.4 \, (syst)] \, {
m GeV} \ \delta M_{top} / M_{top} \simeq 1.0\%$

Luca Brigliadori University of Bologna & INFN

Luca Brigliadori University of Bologna & INFN

• Dilepton 2D Template : mT2 vs m_t^{NWA}

- mT2: evaluated from top-quark transverse mass calculated by assumptions on $m_t, \vec{p}_{T,1}^{
 u}, \vec{p}_{T,2}^{
 u}$
- m_t^{NWA} : from distribution by Neutrino Weighting Algorithm. Need assumptions on $m_t, |\eta_1^{\nu}|, |\eta_2^{\nu}|$.

-
$$M_{top} = [169.0 \pm 2.6 (stat) \pm 3.2 (syst)] \, {
m GeV}$$

Luca Brigliadori University of Bologna & INFN

- DØ, M_{top} from $\sigma_{t\bar{t}}$, $1.0\,{\rm fb}^{-1}$
 - Combination of experimental measurements and SM theoretical predictions for $\sigma_{t\bar{t}}(M_{top})$.
 - Measurements from two selected samples of (L+J) + Dilepton events $\Rightarrow \sigma_{t\bar{t}}^{obs} (M_{top}) \pm \delta \sigma_{t\bar{t}}^{obs} (M_{top})$
 - Theoretical calculations :
 - NLO+NLL (M. Cacciari *et al*, arXiv:0804.2800 [hep-ph])
 - NNLO_{approx} (NNLL) (S. Moch, P. Uwer, arXiv:0804.1476 [hep-ph])
 - $\Rightarrow \sigma^{ ext{theo}}_{tar{t}} \left(M_{top}
 ight) \pm \delta \sigma^{ ext{theo}}_{tar{t}} \left(M_{top}
 ight)$
 - Maximize

$$\mathcal{L}\left(\sigma_{t\bar{t}}, M_{top}\right) = \mathcal{L}^{obs}\left(\sigma_{t\bar{t}}, \sigma_{t\bar{t}}^{obs}, \delta\sigma_{t\bar{t}}^{obs}\right) \times \mathcal{L}^{theo}\left(\sigma_{t\bar{t}}, \sigma_{t\bar{t}}^{theo}, \delta\sigma_{t\bar{t}}^{theo}\right)$$

x-section sample	NLO+NLL	NNLO _{approx}
sample 1 (0.9 fb ⁻¹)	$169.1^{+6.6}_{-6.5}$	$171.2^{+6.5}_{-6.2}$
sample 2 (1.0fb^{-1})	$167.8^{+5.7}_{-5.7}$	$169.6^{+5.4}_{-5.5}$

$$\delta M_{top}/M_{top}\simeq 3.2\%$$

Luca Brigliadori University of Bologna & INFN

March 5, 2009

Huge Bkg, Large Statistics.... Challenging!

Main background

– QCD Multi-Jets

Typical Event Selection

- No energetic lepton.
- \geq 6 energetic and central jets : $E_T \geq$ 15 GeV, $|\eta| <$ 2.
- Small $\not\!\!\!E_T$
- ≥ 1 b-tag
- Need Neural Net and "fine tuned" selection to increase S/B up to $\approx 1/1$ (with ≥ 2 *b*-tags)
- Large Jets partons assignment ambiguity
- Fully reconstructed kinematics

 $M_{top} = 190$ P(m_{+}^{rec} | M_{top}, \Delta JES)

250

 $\Delta JES = -3.0$

300 m^{rec} (GeV)

tt m^{rec} templates, 1 tag events (Δ JES = 0.0)

≥0.14

Fraction of Events/(5 c 800 01 Events/(5 c

0.06

0.04

0.02

€0.18

ເງິ0.16 ຊີ 100

150

200

 $t\bar{t} m_{W}^{rec}$ templates, 1 tag events (M_{top} = 175.0)

CDF, Template Method, $2.9 f b^{-1}$

- Recent inclusion of Jet-shape variables in the NN exploits differences between gluon jets (Bkg) and light quark jets $(t\bar{t})$
- NN and careful tuning of event selection pushed S/B up to 1/1.
- In each event reconstruct :
 - a "top mass", m_t^{rec}
 - a "W mass", $m_W^{rec} \Rightarrow JES$ calibration
- Maximize $\mathcal{L}(M_{top}, JES)$ evaluated by 3452 events with 1 tag and 441 with ≥ 2 tags.

Luca Brigliadori University of Bologna & INFN

Top Mass at the Tevatron

CDF + **DØ**, **July 2008**

Individual channels

Dilepton	$M_{top} = [171.5 \pm 2.6]\mathrm{GeV}$
Lepton + Jets	$M_{top} = [172.1 \pm 1.2]\mathrm{GeV}$
All-Hadronic	$M_{top} = \left[177.5 \pm 4.0 ight] ext{GeV}$

- Best results of each experiment in each channel from Run I and Run II combined.
- All correlations taken into account.
- Single contributions are consistent.
- M_{top} known at 0.7% (July '08).
- Precision now limited by systematic uncertainties.

Systematic source	Systematic uncertainty (GeV/c^2)	
Calibration	0.2	
MC generator	0.5	
ISR and FSR	0.3	
Residual JES	0.5	
$b ext{-JES}$	0.4	
Lepton P_T	0.2	
Multiple hadron interactions	0.1	
PDFs	0.2	
Background	0.5	
Color reconnection	0.4	
Total	1.1	

- Precision on the Top Mass measurement now limited by systematic uncertainties.
- JES uncertainty greatly reduced by *in situ* calibration techniques it becomes statistical!!
-Anyway still the dominant contribution $(\sim 40\% \text{ of } \delta M_{top}(syst))$

Example of Systematic Uncertainties on M_{top} (from CDF L+J ME)

- **CDF and DØ Collaborations are performing a joint effort in order :**
 - ***** to define a common way to evaluate systematics
 - * to avoid possible "double counting" of some effect
 - * to study possible still neglected sources of uncertainties (e.g. Color Reconnections Models)

BRAND NEW RESULT

• The CDF collaboration just approved (...a few hours ago...) an updated combination of measurements, including new results obtained by up to 3.2 fb⁻¹ of data and showed in this talk.

Luca Brigliadori University of Bologna & INFN

Summary

- CDF and DØ experiments at the Fermilab Tevatron keep on performing better and better measurements of the Top Quark mass.
- Only a selection of more recent ones have been presented in this talk. Full details from

www-cdf.fnal.gov www-d0.fnal.gov

- Excellent and consistent results from all decay channels.
- Combinations of results of individual experiments have precisions already beyond Run IIa goal (and still more data to come..)

• It's now the "systematic era". *JES* reduced by simultaneous calibration, but efforts are needed (and already exist) to understand precisely all possible contributions and mismodelings.

• CDF + DØ are at the 0.7% level (...July '08, improvements already expected..)...

 $M_{top} = [172.4 \pm 0.7(stat) \pm 1.0(syst)]\,{
m GeV}$

...but we can even think of $\delta M_{top} \sim 1\,{
m GeV}\,!!!!$

21

- Matrix Element (ME)
 - Define *per-event* probability by Leading Order ME of signal $(t\bar{t})$ and Bkg events as a function of M_{top} , JES and the expected fraction of signal $f_{t\bar{t}}$:

 $P_{ev}\left(\vec{y},\,f_{t\bar{t}},\,M_{top},\,JES\right) = f_{t\bar{t}} \cdot P_{t\bar{t}}\left(\vec{y},\,M_{top},\,JES\right) + \left(1 - f_{t\bar{t}}\right) \cdot P_{bkg}\left(\vec{y},\,JES\right)$

$$P_{t\bar{t}} \propto \frac{1}{N} \int \underbrace{f(z_1) f(z_2) dz_1 dz_2}_{\text{p.d.f.}} \underbrace{\mathcal{W}(\vec{y}, \vec{x}, JES)}_{\text{Transfer function}} \underbrace{d\sigma_{t\bar{t}}(\vec{x}, M_{top})}_{\text{differential}}$$

- P_{bkg} totally analogous, but $d\sigma_{bkg}(ec{x})$.
- P_{ev} gives the probability for the *observed* event kinematics, \vec{y} , to arise from a signal or a bkg event.
- N: Normalization factor
- f(z): Parton density functions
- $\mathcal{W}(\vec{y}, \vec{x}, JES)$: Connect observed jets to partons. Give the probability for the *measured* jet momenta \vec{y} given corresponding parton momenta \vec{x} . Depend on the Jet Energy Scale.

events

- $d\sigma(ec{x})$: Include ME calculation and phase space. Depend on M_{top} for $tar{t}$ events.
- Maximize sample likelihood $\mathcal{L}(\vec{y}, f_{t\bar{t}}, M_{top}, JES) = \prod P_{ev}$

• DØ, Template by Neutrino Weighting Algorithm, $1.0 \ fb^{-1}$

- Two channels :
 - 2 leptons (e, μ) + 2 jets
 - 1 lepton + 1 isolated track + 2 jets (\geq 1 *b*-tag)
- Underconstrained kinematics :
 - Solve constraints by assuming values of m_t , $\eta_{\nu 1}$, $\eta_{\nu 2}$. Possible multiple solutions.
 - Weight each solution by its compatibility with *observed* $\not\!\!E_T$ (Neutrino Weighting Algorithm)
 - Sum weights over $\eta_{\nu 1}$ / $\eta_{\nu 2}$ / jets-assignments / solutions to obtain an event weight for given m_t
 - Set \vec{x} of properties of weights distribution (e.g. peak value, mean, RMS) sensitive to true M_{top} \Rightarrow Templates $f_s(\vec{x}|M_{top}), f_b(\vec{x}).$

•• CDF, Templates, $3.0 fb^{-1}$

- Simoultaneous, template-based, measurement in L+J and Dilepton channels
- Dilepton 2D Template : mT2 vs m_t^{NWA}
 - mT2: evaluated from top-quark transverse mass:
 - * Assume \vec{p}_T of neutrinos (with $\vec{p}_{T,1}^{\nu} + \vec{p}_{T,2}^{\nu} = \vec{p}_{T\ miss}$) and a neutrinos/jets assignment to t and \bar{t} .
 - * Calculate the corresponding transverse masses for t and \overline{t} ($m_{T,1}$ and $m_{T,2}$).

$$m_{T}^{2} = m_{bl}^{2} + m_{
u}^{2} + 2 \left(E_{T}^{bl} E_{T}^{v} - ec{p}_{T}^{bl} \cdot ec{p}_{T}^{v}
ight)$$

* Take $mT2 = \min \{\max [m_{T,1}, m_{T,2}]\}$ where minimization is considered over all neutrinos \vec{p}_T and parton assignments.

March 5, 2009

•• CDF, Templates, $3.0 fb^{-1}$continued

- Lepton + Jets 2D Template : m_{jj} vs m_t^{reco}
 - m_t^{reco} is the top mass reconstructed in the event by a χ^2 fit. Strongly correlated to "true" M_{top} , but also JES-dependent.
 - All parton-jet assignments and \vec{p}_z^{ν} solutions are considered. m_t^{reco} from best χ^2 is chosen for the event.
 - m_{jj} is the invariant mass of untagged di-jet systems, related to M_W . As being sensitive to JES, it allows *in situ* calibration.

University of Bologna & INFN

Template Method

CDF, Lepton + Jets : χ^2 expression for m_t^{reco} (free parameters m_t^{reco} , $p_{T,i}^{fit}$ and U_i^{fit}) $\chi^2 = rac{\left(m_{jj} - M_W
ight)^2}{\Gamma_W^2} + rac{\left(m_{l
u} - M_W
ight)^2}{\Gamma_W^2} + rac{\left(m_{jjb} - m_t^{reco}
ight)^2}{\Gamma_t^2} + rac{\left(m_{l
u b} - m_t^{reco}
ight)^2}{\Gamma_t^2}$ $+ \sum_{i=l,jets} \frac{\left(p_{T,i}^{fit} - p_{T,i}^{meas}\right)^2}{\sigma_i^2} + \sum_{j=x,y} \frac{\left(U_j^{fit} - U_j^{meas}\right)^2}{\sigma_j^2}$ CDF, All-Hadronic : χ^2 expression for m_t^{rec} (free parameters m_t^{rec} and $p_{T,i}^{fit}$) $\chi^2 = rac{\left(m_{jj}^{(1)} - M_W
ight)^2}{\Gamma_W^2} + rac{\left(m_{jj}^{(2)} - M_W
ight)^2}{\Gamma_W^2} + rac{\left(m_{jjb}^{(1)} - m_t^{rec}
ight)^2}{\Gamma_\star^2} + rac{\left(m_{jjb}^{(2)} - m_t^{rec}
ight)^2}{\Gamma_\star^2}$ $+\sum \frac{\left(p_{T,i}^{fit}-p_{T,i}^{meas}
ight)^2}{\sigma^2}$ i = iets

* $m_{jj}, m_{l
u}$: Invariant masses of dijet and lepton-neutrino systems

- * $m_{jjb}, m_{l\nu b}$: Invariant masses of three-particle systems including *b*-jets
- * $p_{T,i}^{meas}, \sigma_i$: Measured transverse momenta of lepton, jets and uncertainties
- * U_j^{meas}, σ_j : components of unclustered energy and uncertainties.
- * M_W, Γ_W, Γ_t : Mass of W boson and widths of W and top quark

- New models of Color Reconnection (CR) have been introduced in recent versions of PYTHIA starting with V6.3. In our analysis we have been using PYTHIA V6.2 (tune A).
- The latest version (PYTHIA V6.4) includes, in addition to a new model for CR, new models for the parton shower, the Multiple Parton Interaction (MPI), ISR and FSR and the Underlying Event (UE).
- The CDF and DØ Collaborations work together on understanding the effects of these changes and on defining a common procedure to include them in the systematic uncertainties.
- Tuning of PYTHIA V6.4 to data is in progress. Tunes which include LEP data (called "pro") are now available. (see Perugia MC meeting, October 2008).
- So far we have looked at two recent tunes : ACR(pro) and S0(pro)

- Tune ACR(pro): includes only the new CR model.
 - **Tune S0(pro)**: uses new modeling for ISR/FSR, parton shower, MPI, UE and CR. For this tune, we have to investigate possible overlaps with the systematic uncertainties we are now using.
- At this stage of our studies we evaluate the CR systematics using the ACR(pro) tune, that inlcudes only changes in the CR model. We compare ACR(pro) to A(pro) (tune A in PYTHIA V6.4) tunes.
- This has been done in the Dilepton, the Lepton + Jets and All-Hadronic channels. The three mass shifts agree within statistics.

 $\Delta M_{top} = M_{top}(A(\text{pro})) - M_{top}(ACR(\text{pro})) = (0.4 - 0.5) \pm 0.3 \,\text{GeV}$

• Work is in progress to compare jet shapes in PYTHIA V6.4 with data from various samples to isolate the effects of the new parton shower from the CR contribution.