

Properties of *B* hadrons: results from Tevatron

G. Borissov Lancaster University, UK

- B hadrons allow to study all kinds of interactions, both at short and long distance;
- QCD becomes a precise science for heavy-light quark bound system
 - Ratio of lifetimes of different B hadrons are predicted with $\sim 1-3\%$ accuracy;
 - Masses of different B baryons are predicted with few MeV precision;
- Experimental measurements have comparable or better precision;
- Meaningful comparison of experiment and theory is possible;
- Experimental input helps a lot to develop theoretical methods
 - Example: initial theoretical estimates of $\tau(\Lambda_b)/\tau(B^0)$ significantly improved following the discrepancy with the experimental results;

- Many new results on properties of *B* hadrons come from Tevatron. In this talk:
 - Masses of particles containing b quark;
 - Lifetimes;
- In other talks:
 - $-B_s$: Oscillation, lifetime difference and CP violation;
 - Unitarity triangle, including contributions from Tevatron;
 - Rare decays of B mesons and implications for new physics;

B baryon spectroscopy

- Many new results on properties of *B* baryons were obtained recently;
- Excellent possibility to compare theory and experiment:
 - Precise theoretical predictions of masses (e.g. E. Jenkins, PRD 55, R10-R12 (1997)):
 - $M(\Xi_h) = 5805.7 \pm 8.1$ MeV;
 - $M(\Sigma_b) = 5824.2 \pm 9.0 \text{ MeV};$
 - $M(\Sigma_b^*) = 5840.0 \pm 8.8 \text{ MeV};$
 - $M(\Omega_b) = 6068.7 \pm 11.1 \text{ MeV};$
 - Interesting to note: $M(\Xi_b) < M(\Sigma_b)$ (contrary to baryons with light and charm quarks;

Expected baryons with b quark

Observed B baryons

• Σ_b and ${\Sigma_b}^*$ (CDF)

$$M(\Sigma_b^+) = 5807.8^{+2.0}_{-2.2} \pm 1.7 \text{ MeV}$$

$$M(\Sigma_b^-) = 5815.2 \pm 1 \pm 1.7 \text{ MeV}$$

$$M(\Sigma_b^{*+}) = 5829_{-1.8}^{+1.6} \pm 1.7 \text{ MeV}$$

$$M(\Sigma_b^{*-}) = 5836.4 \pm 2.0_{-1.7}^{+1.8} \text{ MeV}$$

• Ξ_b^-

$$M(\Xi_b^-) = 5774 \pm 11 \pm 15$$
 MeV (Dzero)

$$M(\Xi_b^-) = 5792.9 \pm 2.4 \pm 1.7$$
 MeV (CDF)

04 March 2009

G.Borissov, Properties

Discovery of Ω_b

- DØ collaboration recently reported the observation of Ω_b (bss):
 - Decay chain $\Omega_b^- \rightarrow J/\psi \Omega^-$; $\Omega^- \rightarrow \Lambda K^-$; $\Lambda \rightarrow p\pi^-$ is used;
- The same statistics and the same special processing of data is used:
 - Special reprocessing of data with the increased acceptance of low momentum tracks with large impact parameter allowed to increase the efficiency of Ω -reconstruction \sim 6 times;

Discovery of Ω_b

• Multivariate technique (BDT) was used to improve the signal selection and suppress background:

The invariant mass distribution of the ΛK pair before and after the BDT selection

• 17.8 ± 4.9 events observed (5.4 σ statistical significance);

$$M(\Omega_b^-) = 6165 \pm 10 \pm 13$$
 MeV (Dzero)_{drons}

Comparison with theory

- In general, theory predicts a lower Ω_b mass:
 - $-6039 \pm 8 \text{ MeV}$
 - E. Jenkins, PR D77, 034012 (2008);
 - $-6052.1 \pm 5.6 \text{ MeV}$
 - M. Karliner et al. arXiv:0804.1575;
 - $-6036 \pm 81 \text{ MeV}$
 - X. Liu et al., PR D77, 014031 (2008);
 - $-6006 \pm 22 \text{ MeV}$
 - R. Lewis, R.M. Woloshyn, PR D79, 014502 (2009);

Comparison of theoretical prediction (boxes) and experimental results (red lines). Taken from: R. Lewis, R.M. Woloshyn, PR D79, 014502 (2009);

Additional experimental and theoretical studies are required to resolve this new Ω_b puzzle

B_c mass

- Now measured by both CDF and DØ collaborations in $B_c \rightarrow J/\psi \pi$ mode;
- Consistent results are obtained:

$$M(B_c) = 6275.6 \pm 2.9 \pm 2.5$$
 MeV (CDF)
 $M(B_c) = 6300 \pm 14 \pm 5$ MeV (Dzero)

Agree well with theory prediction:

$$M(B_c) = 6304 \pm 12^{+18}_{-0} \text{ MeV (Theory)}$$

(lattice QCD calculations, J.
Allison *et al.* PRL 94, 172001 (2005)):

Excited B^{**} mesons

- Tevatron is currently the main source of information on excited (L=1) states with b quark;
- Theory gives precise predictions on the masses of these states, and especially on the mass splitting between B_2^* and B_1 mesons;
- Good possibility to compare theory and experiment;

Excited B^{**} mesons

- Decay mode $B^{**} \rightarrow B^+ \pi^-$ is used;
- Both CDF and DØ observe B_1 and B_2^* states:

$$M(B_1) = 5720.6 \pm 2.4 \pm 1.4 \text{ MeV (Dzero)}$$

 $M(B_1) = 5725.3^{+1.6+1.4}_{-2.2-1.5} \text{ MeV (CDF)}$

$$M(B_2^*) = 5746.8 \pm 2.4 \pm 1.7 \text{ MeV (Dzero)}$$

 $M(B_2^*) = 5740.2^{+1.7}_{-1.8}{}^{+0.9}_{-0.8} \text{ MeV (CDF)}$

• Maximal difference between results of two collaborations is $\sim 2\sigma$

Excited B_s^{**} states

- CDF observes both B_{s2}^* and B_{s1} states, while DØ confirmed only B_{s2}^* meson:
 - Lack of statistics does not allow the DØ collaboration to either confirm or deny B_{sl} ;

$$M(B_{s1}) = 5829.4 \pm 0.7 \text{ MeV (CDF)}$$

$$M(B_{s2}^*) = 5839.6 \pm 1.1 \pm 0.7 \text{ MeV (Dzero)}$$

 $M(B_{s2}^*) = 5839.6 \pm 0.7 \text{ MeV (CDF)}$

• Measured masses of B^{**} states can be compared with theoretical predictions;

Lifetime of b hadrons

- Lifetime is another quantity which allows direct comparison between theory and experiment;
- Theory predicts the hierarchy:

$$\tau(B_c^+) << \tau(\Lambda_b^0) < \overline{\tau}(B_s^0) \approx \tau(B^0) < \tau(B^+)$$

- Theory predictions are especially precise for lifetime ratios;
- Precision of Tevatron results is now dominant for B_s , Λ_b and B_c lifetimes;
- It is much better than all previous measurements;

B_s Lifetime (CDF)

• New CDF result in $B_s \rightarrow D_s \pi$ channel:

$$\tau(B_s^0) = 1.518 \pm 0.041 \pm 0.027 \text{ ps}$$

PDG2008:
$$\bar{\tau}(B_s^0) = \frac{2}{\Gamma_L + \Gamma_H} = 1.470_{-0.026}^{+0.027}$$

Λ_b Lifetime

- A lot of discussion of Λ_b lifetime recently (" Λ_b puzzle");
- Earlier theoretical calculations predicted $\tau(\Lambda_b)/\tau(B^0)$ value around 0.94, experimental values (mainly LEP measurements) were around 0.75;
- Recent calculations include higher order effects and predict a lower ratio: 0.86 0.95:
 - C. Tarantino, Eur. Phys. J. C 33, S895 (2004);
 - F. Gabbiani et al., Phys. Rev. D 70, 094031 (2004).
- Tevatron results increased the experimental value, but there was some inconsistency between collaborations:
 - CDF measurement in $\Lambda_b \rightarrow J/\psi \Lambda$: $\tau(\Lambda_b) = 1.580 \pm 0.077 \pm 0.012 \ ps$ (CDF)
 - DØ measurement in $\Lambda_b \to J/\psi \Lambda$: $\tau(\Lambda_b) = 1.218^{+0.130}_{-0.115} \pm 0.042 \ ps$ (D0)
 - DØ measurement in $\Lambda_b \to \mu \nu \Lambda_c$: $\tau(\Lambda_b) = 1.290^{+0.119}_{-0.110} \pm ^{+0.087}_{-0.091} ps$ (D0)
 - There was $\sim 2.5\sigma$ difference between CDF and DØ

Λ_b lifetime (CDF)

CDF released a new result on Λ_b lifetime measured in $\Lambda_b \rightarrow \Lambda_c \pi$ mode: $\tau(\Lambda_b) = 1.410 \pm 0.046 \pm 0.029 \text{ ps}$

- The most precise single measurement;
- Excellent description of the mass and lifetime distribution;
- Events are obtained with the lifetime biasing trigger;

G.Borissov, Proper

Λ_b lifetime (summary)

- New results from Tevatron now dominate in the world average precision of Λ_b lifetime;
- New CDF result (shown in red) eliminates the inconsistency between the experiments;
- World average is now consistent with the theoretical prediction;

B_c lifetime

- Now measured by both CDF and DØ collaborations in $B_c \rightarrow J/\psi l v$ mode
 - CDF uses events with $l = \mu, e$; DØ with $l=\mu$ only;
- Results are consistent and precision is similar:

$$au(B_c) = 0.475^{+0.053}_{-0.049} \pm 0.018 \text{ ps (CDF)}$$
 $au(B_c) = 0.448^{+0.038}_{-0.036} \pm 0.032 \text{ ps (Dzero)}$

World average value:

$$\tau(B_c) = 0.461 \pm 0.036 \text{ ps (HFAG)}$$

- Experimental precision is now much better than the theoretical:
 - $-\tau(B_c) = 0.4 0.7 \text{ ps}$ (V.V. Kisilev, hep-ph 0211201)
 - Need the updated theoretical prediction;

Current status of lifetime measurements

- Excellent agreement between experiment and theory;
- Need to improve the theoretical precision for $\tau(B^+)/\tau(B^0)$, $\tau(B_c)$ for a more accurate comparison with experiment;
- Need to measure the lifetime of B baryons $-\Xi_b$, Ω_b for the new tests of theory;

Conclusions

- B-physics program at Tevatron gives rich results:
 - Discovery of new states containing b quark;
 - Precise measurement of masses of B hadrons;
 - Precise measurement of lifetime of B hadrons;
- All these results provide an important input for theoretical computation and help to tune the models describing the quark system;
- Still a lot more is expected in the future:
 - Main results were obtained with 1-2 fb⁻¹/experiment;
 - We already have 5 fb⁻¹ / experiment available;
 - We continue the data taking and expect even more statistics;