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INFN, Sezione di Torino, Via P. Giuria 1, I-10125 Torino, Italy

Summary. — We review recent progress in determining the infrared singularity
structure of on-shell scattering amplitudes in massless gauge theories. We present
a simple ansatz where soft singularities of any scattering amplitude of massless
partons, to any loop order, are written as a sum over colour dipoles, governed by
the cusp anomalous dimension. We explain how this formula was obtained, as the
simplest solution to a newly-derived set of equations constraining the singularity
structure to all orders. We emphasize the physical ideas underlying this derivation:
the factorization of soft and collinear modes, the special properties of soft gluon
interactions, and the notion of the cusp anomaly. Finally, we briefly discuss potential
multi-loop contributions going beyond the sum-over-dipoles formula, which cannot
be excluded at present.

PACS 11.15.-q – Gauge field theories.
PACS 12.38.-t – Quantum chromodynamics.
PACS 12.38.Cy – Summation of perturbation theory.

1. – The role of infrared singularities

Understanding soft and collinear singularities is essential for the application of QCD
to collider physics. Indeed, cross section calculations beyond tree level involve intricate
cancellations of such singularities in the sum over final states. A detailed understanding of
the singularities is therefore a prior condition to making precise predictions. Furthermore,
knowing the singularities, one can resum the dominant radiative corrections to all orders,
greatly improving the accuracy of the prediction.

Beyond their immediate significance to phenomenology, infrared singularities open a
window into the all-order structure of perturbation theory. They admit a simple, iter-
ative structure, which is common to all gauge theories. Understanding this structure is
an important step towards understanding scattering amplitudes in gauge theories in gen-
eral. As an example, recent progress in studying scattering amplitudes in the maximally
supersymmetric (N = 4) Yang-Mills theory in the planar limit [1-5], has demonstrated
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that in that case the iterative structure of the amplitude persists in its finite parts. More-
over, for the first time a bridge was formed between the weak coupling expansion and
the strong coupling limit. In these studies the infrared singularity structure had a key
role. In particular, the cusp anomalous dimension γK(αs) [6-11], which, as we shall see,
governs soft singularities in any scattering amplitude, was shown to have an important
role also in determining the finite parts of the amplitude. Today γK(αs) is the best
understood anomalous dimension, at both weak [12] and strong coupling [4, 13-15]. As
shown by this example, there is a strong theoretical incentive to gain full understand-
ing of the singularity structure of scattering amplitudes. Let us now discuss the more
pragmatic motivation aiming at precision collider phenomenology.

Cross–section calculations beyond tree level . – The very fact that gauge-theory am-
plitudes are plagued by long-distance singularities while the corresponding cross sections
are finite, makes the determination of these singularities essential. The cancellation of
infrared singularities in cross sections takes place upon summing over degenerate states,
as originally shown in QED by Bloch and Nordsieck [16], and later proven in [17, 18].
Virtual gluons generate singularities in amplitudes owing to the integrations over loop
momenta, which extend over regions where the gluons are soft or collinear with any of
the hard partons — this puts some internal propagators on shell, leading to singularities.
In contrast, real emission diagrams are finite, but singularities appear upon performing
phase-space integrations over regions where the emitted partons become soft or collinear
with other partons. The physical cross section is a sum of these two contributions,
which can be separately computed in dimensional regularization. Schematically, using
D = 4 − 2ǫ dimensions with ǫ < 0, one finds cancellations of the form

(1)
1

ǫ︸︷︷︸
virtual

+ (Q2)ǫ

∫ m2
jet

0

dk2

(k2)1+ǫ

︸ ︷︷ ︸
real

=⇒ ln(m2
jet/Q

2) ,

where Q2 represents a hard energy scale, e.g. the squared centre-of-mass energy s, while
m2

jet represents the phase-space limit in the integration of the radiated gluon, which
depends on the observable considered, e.g. a jet mass. Because of their different origin,
these singularities render any calculation of scattering cross sections beyond tree level
highly non-trivial.

At the one-loop order we have a complete understanding of these singularities. This
forms the basis for general subtraction algorithms, for example based on a colour dipole
picture [19], rendering the phase–space integration finite. The possibility to perform such
local subtraction has been invaluable to practical cross–section calculations. Present day
collider phenomenology requires computations of multi-leg processes in general kinemat-
ics, in order to allow for maximal flexibility in the application of kinematic cuts dictated
by the search strategies and experimental needs. This leads to complicated phase-space
integrations, which can only be done numerically. Thus, a local subtraction of the sin-
gularities — which guarantees finite integrals — is an absolute necessity. General sub-
traction algorithms do not exist yet at the multi-loop level and their development is
of prime importance to precision computations. The first step in this direction is the
determination of the singularity structure of amplitudes, the subject of the present talk.

Resummation. – Beyond fixed-order cross-section calculations, infrared singularities
also provide the key to resummation of soft and collinear gluon radiation. Singular contri-
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butions cancel between real and virtual corrections, but, as shown schematically in eq. (1),
a residual logarithm survives. These logarithmically–enhanced corrections (Sudakov log-
arithms) are the dominant radiative corrections for many cross sections. In particular,
these corrections are parametrically leading when the relevant scales are far apart — for
example in eq. (1) when m2

jet ≪ Q2. Whenever the logarithm becomes as large as the
inverse power of the coupling, it spoils the converges of the expansion, and corrections
involving powers of αs ln(m2

jet/Q
2) need to be resummed to all orders. The situation

is complicated by the fact that, due to overlapping soft and collinear divergences, each
order in perturbation theory can give rise to two logarithms, yielding αs ln2(m2

jet/Q
2).

In this case, resummation is necessary already for ln(m2
jet/Q

2) ∼ 1/
√
αs. Because these

logarithms are all generated by the singularities in the amplitude, which always expo-
nentiate, higher powers of the logarithms at any order in the coupling can be predicted
based on the singular terms in the first few orders in the loop expansion. This is a key
ingredient for resummation.

The most widely used applications of this picture are parton–shower event generators,
which implement Sudakov resummation with leading logarithmic accuracy, keeping com-
plete kinematic information on the generated final state. To achieve better precision one
typically resorts to a more inclusive approach. Indeed, it has been repeatedly demon-
strated in a variety of applications, e.g. [20-25], that precise predictions can be obtained
in kinematic regions that are characterized by a large hierarchy of scales upon performing
Sudakov resummation, provided one gains sufficient control of subleading logarithms and
related power corrections.

The theory of Sudakov resummation is especially well developed in inclusive observ-
ables, where the hard scattering process involves just two coloured partons [22,23,26-31].
Such processes are characterized by a single or a double hierarchy of scales. Examples of
the first category include deep-inelastic structure functions at large Bjorken x [32], and
Drell-Yan or Higgs production near partonic threshold, or at small transverse momen-
tum [22, 23]. Examples of the second include event–shape distributions [20, 33], heavy
quark production [21,34], and inclusive meson decay spectra [24,25]. The Sudakov factor
in processes involving two (incoming or outgoing) partons, may be written in the generic
form

Sud(m2, N) = exp



Ci

∫ 1

0

dr

r

[
(1 − r)N−1

︸ ︷︷ ︸
real

−1︸︷︷︸
virtual

]
R(m2, r)



 ,(2)

where Ci = CF or CA depending on the colour representation of the hard partons
(fundamental or adjoint), and the radiator is given by

Ci
R(m2, r)

r
= −1

r

[∫ rm2

r2m2

dk2

k2
γK

(
αs(k

2)
)

+ 2B
(
αs(rm

2)
)
− 2D

(
αs(r

2m2)
)
]
.(3)

These two equations summarize, in a compact way, the form of logarithmically-enhanced
terms in a typical infrared-safe cross section, to all orders in perturbation theory. This
simple structure is a consequence of factorization, namely the fact that soft and jet
subprocesses decouple from the hard interaction and are mutually incoherent. Eq. (2)
incorporates the cancellation between real and virtual singularities anticipated in (1).
Note that this equation is written in moment space: only then does the real emission
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phase–space factorise (see, however, [35]). Eq. (3) describes the structure of the Sudakov
exponent in terms of a few anomalous dimensions which are functions of the running
coupling only. This additive structure of the exponent is in one-to-one correspondence
with the phase-space origin of the various corrections: collinear logarithms, characterised
by momenta of order m2r, are controlled by B(αs); soft (large-angle) logarithms, charac-
terised by momenta of order m2r2, are controlled by D(αs); finally, the overlap between
the soft and the collinear regions is governed by the cusp anomalous dimension γK(αs),
which is a universal quantity, the one and only source of double logarithms.

J1
S

J1

J4

J3J2

J5

HH

Fig. 1. – Singular configurations for a fixed-angle multi-parton scattering amplitude

Singularities in multi-leg amplitudes. – The application of Sudakov resummation to
hard processes with several coloured partons is less developed, and it will become more
important for LHC physics. The starting point to perform such a resummation is the
analysis of the singularity structure of the corresponding scattering amplitudes (fig. 1)
at fixed angles [36, 37], assuming no strong hierarchy between the various kinematic in-
variants. A priori, upon considering a multi-leg hard process with general kinematics,
one may expect a complicated singularity structure, more intricate than the simple ex-
pressions of eqs. (2) and (3). Yet, the goal remains to understand the singularities to
any loop order in terms on a small set of anomalous dimensions, which are functions of
the coupling only.

Fig. 2. – Gluon ‘webs’ entering the soft function at 2, 3 and 8 loops respectively
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A further complication arises in a non-Abelian gauge theory, as soon as the ampli-
tude involves more than three hard partons: soft gluon interactions induce correlations
between kinematic and colour degree of freedom. Soft gluons still exponentiate, but this
exponentiation now involves matrices defined in a given colour basis (see below). Re-
summation formulae such as eqs. (2) and (3) may only hold upon diagonalizing these
matrices. The size of the matrices depends only of the colour representations of the ex-
ternal hard partons. A priori, however, at each loop order one would expect new colour
correlations (as suggested by fig. 2), which would require re-diagonalizing the matrix.

The theoretical understanding of infrared singularities in multi-leg processes has re-
cently taken a significant leap forward. The first step was taken in [38], where a two-loop
calculation of the infrared singularities in multi-leg amplitudes was first performed. The
conclusions were rather suprising at the time: the colour matrix structure of the soft
anomalous dimension that controls the singularities at two loops turned out to be iden-
tical to the one at one loop. The next step was taken very recently in [39] and in parallel
in [40, 41]. These papers explained the findings of [38] and proposed a formula that
generalizes this result to all loops. According to this formula, no new correlations are
introduced by multi-loop webs. Instead, the correlations generated by soft gluons are
always described by a sum over two–body interactions between hard partons, and thus
the matrix structure at any loop order is the same as at one loop. We shall present
this formula in the next section. This proposal is based on a set of all–order constraints
(see secs. 6 and 7 below) that relate the singularity structure in any multi-leg ampli-
tude to the cusp anomalous dimension γK(αs). The derivation of these constraints is
based on factorization and on the universal properties of soft gluon interactions, which
are described in secs. 3, 4 and 5. Importantly, in amplitudes with four legs or more the
sum-over-dipoles formula is still an ansatz: although this formula is consistent with all
available constraints, there may be additional contributions at three loops or beyond,
which we can constrain but not exclude at present. This issue is briefly summarized in
sec. 8.

2. – The sum-over-dipoles formula

Consider a scattering amplitude M
(
pi/µ, αs(µ

2), ǫ
)
, involving a fixed number n of

hard coloured partons carrying momenta pi, i = 1 . . . n, all lightlike, p2
i = 0, and any

number of additional non-coloured particles. We assume that ultraviolet renormalization
has been performed (µ being the renormalization scale) thus all remaining singularities
are associated with long-distances, and can be regularized working in D = 4− 2ǫ dimen-
sions, with ǫ < 0. The singularities depend on all the kinematic invariants that can be
formed out of the hard parton momenta, pi · pj (n(n− 1)/2 invariants for an n−parton
amplitude). We work with general kinematics and assume no special hierarchy between
these invariants; they must all be large compared to Λ2

QCD, and their ratios are regarded
as numbers of order unity. Momentum conservation is not imposed between the coloured
partons, allowing for any recoil momentum to be carried by non-coloured particles in
both the initial and final states. Soft and collinear factorization properties guarantee
that all infrared singularities can be absorbed into an overall multiplicative factor Z: one
writes formally

(4) M
(
pi/µ, αs(µ

2), ǫ
)

= Z
(
pi/µF , αs(µ

2
F ), ǫ

)
H
(
pi/µ, µ/µF , αs(µ

2)
)
,
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where H is finite and can be taken to be independent of ǫ. Note that in general, the
factorization scale µF , at which Z is defined, is distinct from the renormalization scale
µ. For simplicity in the following we choose µF = µ. Eq. (4) should be understood as
a matrix multiplication in colour space: H is a vector in some colour basis, accounting
for the hard scattering process, including any loop corrections involving highly virtual
gluons. These are necessarily finite. Z is a matrix in this space, mixing the components
of the vector H, and accounting for soft and collinear singularities. According to the
ansatz of Ref. [39] Z assumes the form(1)

Z
(
pi/µ, αs(µ

2), ǫ
)

= exp

{∫ µ2

0

dλ2

λ2

[
1

8
γ̂K

(
αs(λ

2, ǫ)
) ∑

(i,j)

ln

(
2pi · pj eiπλij

λ2

)
Ti · Tj

− 1

2

n∑

i=1

γJi

(
αs(λ

2, ǫ)
)
]}

,

(5)

where the notation
∑

(i,j) indiactes a sum over all pairs of hard partons forming colour

dipoles, where each pair is counted twice (i, j) and (j, i), and Ti · Tj ≡ ∑
a T

(a)
i · T(a)

j ,

where Ti is a generator(2) in the colour representation of parton i. The overall colour
charge is conserved,

n∑

i=1

T
(a)
i = 0 .(6)

The same ansatz was proposed independently in Ref. [40,41].
As originally proposed in [43] (see also [44]), singularities in eq. (5) are generated

exclusively through integration over the D-dimensional running coupling αs(λ
2, ǫ), which

obeys the renormalization group equation

(7) µ
∂αs(µ

2, ǫ)

∂µ
= β(ǫ, αs) = − 2 ǫ αs −

α2
s

2π

∞∑

n=0

bn

(αs

π

)n

,

where b0 = (11CA − 2nf )/3. It is easy to verify that the solution to this equation for
small coupling and fixed, negative ǫ, is power suppressed at small scales,

(8) αs(λ
2, ǫ) =

(
λ2

µ2

)−ǫ [
αs(µ

2, ǫ) + O
(
α2

s

) ]
,

which guarantees convergence of integrals ranging from λ2 = 0 to some fixed scale µ2,
as in eq. (5). Non-trivial higher-loop corrections enter in (5) only through higher–order

(1) Following [42] we keep track of the unitarity phases by writing −pi · pj = |pi · pj | eiπλij ,
where λij = 1 if i and j are both initial-state partons or are both final–state partons, and λij = 0
otherwise.

(2) T(a) should be interpreted as follows: for a final–state quark or an initial–state antiquark:
ta
αβ ; for a final–state antiquark or an initial–state quark: −ta

βα; for a gluon: i fcab.



INFRARED SINGULARITIES IN QCD AMPLITUDES 7

corrections to the anomalous dimensions γ
(i)
K (αs) and γJi

(αs). The former — but not
the latter — is assumed here to admit Casimir scaling, namely to depend on the colour
representation of the parton i only through an overall factor given by the corresponding
quadratic Casimir,

(9) γ
(i)
K (αs) = Ci γ̂K(αs) ; Ci ≡ Ti · Ti .

γ̂K(αs) = 2αs/π+O(α2
s) is known explicitly to three-loop order based on the calculation

by Moch, Vermaseren and Vogt, [12,45]. Potential contributions of higher-order Casimirs
at four loops and beyond will be briefly discussed in sec. 8.

The first term in eq. (5), which is governed by the cusp anomalous dimension γ̂K , rep-
resents the singularities generated by the interaction of large-angle soft gluons described
by the S function in fig. 1. This term is written as a sum over colour dipoles formed by
any pair of hard partons; it correlates the kinematic dependence on the Lorentz invariant
pi ·pj with the corresponding product of colour generators, Ti ·Tj . This correlation is pre-
cisely the one present at the one–loop order. This would imply that no new correlations
are generated by multi-loop webs such as the ones shown in fig. 2 — a highly non-trivial
statement, which was not yet tested by direct calculations beyond the two-loop level.

The second term in eq. (5) represents the interaction of collinear gluons. It is governed
by the jet anomalous dimension corresponding to each of the external partons, quarks
or gluons. These anomalous dimensions are defined in (26) below; they depend not only
on the colour representation of these partons but also on their spin. Their values are
known to three-loop order, based on the calculation of the quark and gluon form factors
in Refs. [46,47]; the coefficients have been conveniently collected in Appendix A of [41].

Eq. (5) may well be the exact expression for the singularities of any on-shell scattering
amplitude in massless gauge theories. As already emphasized, the simplicity of this
result is striking, especially when compared to the lengthy and complicated expressions
one typically obtains for multi-leg amplitudes. It is also not what one would naturally
expect looking at the diagrams of fig. 2. Indeed eq. (5) requires that some remarkable
cancellations take place in these diagrams. It is therefore very interesting to see how
eq. (5) emerged out of general considerations. This is the goal of the following sections.

3. – Eikonal approximation and rescaling invariance

The first key ingredient in deriving the constraints on the singularity structure is
the universal nature of soft gluon interactions, in particular their independence on the
absolute momentum scale of the hard parton to which they couple. Let us first ex-
plain the origin of this property and then analyse its consequences in the context of the
factorization of an on-shell amplitude.

Fig. 3. – Gluon bremsstrahlung off an outgoing quark. The final–state quark is on shell, p2 = m2.

Consider, for example, soft gluon radiation off a hard quark, as shown in fig. 3. We
assume that after this emission the quark is on shell, so that p2 = m2 (where m2 can



8 E. GARDI and L. MAGNEA

vanish, but this is not necessary for the argument that follows). Applying the ordinary
Feynman rules one obviously obtains a result that depends on the radiating particle spin
and momentum — the first expression in eq. (10). Considering instead the limit where
the gluon is soft (k → 0) one obtains a much simpler result,

(10) ū(p)
(
−igsT

(a)γµ
) i(p/+ k/+m)

(p+ k)2 −m2 + iε
=⇒
k → 0

ū(p)gsT
(a) pµ

p · k + iε
,

which depends only on the colour charge and direction β of the quark momentum

(11) gsT
(a) pµ

p · k + iε
= gsT

(a) βµ

β · k + iε
.

Equivalently, we observe that the resulting “eikonal” Feynman rules are invariant with
respect to rescaling of the quark velocity, β → κβ, a symmetry property that will be
central to our discussion in what follows. Finally, we note that the eikonal approximation
is conveniently formulated by replacing the dynamical hard partons, which provide the
source for the radiation, with Wilson lines along their classical trajectories,

(12) Φβ(0,−∞) = P exp

[
igs

∫ 0

−∞

dλβ ·A(λβ)

]
.

Here rescaling invariance is inherent: it is realised through reparametrization of the
integral along the path.

4. – Factorization

The second key element is the factorization of soft and collinear singularities in the
amplitude, illustrated in fig. 1. Following [38,48-51], we write

ML

(
pi/µ, αs(µ

2), ǫ
)

=
∑

K

SLK

(
βi · βj , αs(µ

2), ǫ
)
HK

(
2pi · pj

µ2
,
(2pi · ni)

2

n2
iµ

2
, αs(µ

2)

)

×
n∏

i=1

Ji

(
(2pi · ni)

2

n2
iµ

2
, αs(µ

2), ǫ

)

Ji

(
2(βi · ni)

2

n2
i

, αs(µ
2), ǫ

) .(13)

Here the hard function HK and the amplitude ML are vectors in the space of available
color configurations; the soft function SLK is a matrix in this space, while the jet functions
Ji and Ji do not carry any colour index. The soft matrix S and the jet functions J and
J contain all soft and collinear singularities of the amplitude, while the hard functions
HK can be taken to be independent of ǫ. Each of the functions appearing in eq. (13) is
separately gauge invariant and admits operator definitions that are given below.

The soft and jet functions involve semi-infinite Wilson lines, defined in (12). The
‘partonic jet’ function (for, say, an outgoing quark with momentum p) is defined by

(14) u(p)J

(
(2p · n)2

n2µ2
, αs(µ

2), ǫ

)
= 〈p |ψ(0)Φn(0,−∞) |0〉 .
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The function J represents a transition amplitude connecting the vacuum and a one-
particle state. The eikonal line Φn simulates interactions with partons moving in different
directions: the direction nµ is arbitrary, but off the light-cone, in order to avoid spurious
collinear singularities.

The factorization formula (13) also involves the eikonal approximation to the partonic
jet J , which we call the ‘eikonal jet’. It is defined by

(15) J
(

2(β · n)2

n2
, αs(µ

2), ǫ

)
= 〈0|Φβ(∞, 0)Φn(0,−∞) |0〉 ,

where the velocity vector βi of each jet is related to the corresponding momentum pi by
pi = βiQ0/

√
2, with Q0 a hard scale such that pi · pj/Q

2
0 is of order one for all i, j.

Both the partonic jet (14) and the eikonal jet (15) have soft divergences, as well as
collinear divergences associated to their light-like leg; thus, they display double poles
order by order in perturbation theory. The double poles are however the same, since in
the soft region J correctly approximates J : singular contributions to the two functions
differ only by hard collinear radiation.

The final ingredient in (13) is the soft matrix, which we define by taking the eikonal
approximation for all gluon exchanges: since soft gluons do not resolve the details of
the hard interaction nor the internal structure of the jets, they couple effectively to
Wilson lines in the colour representations of the corresponding hard external partons.
Such exchanges mix the colour components of the amplitude, forming a matrix in colour
space. Choosing a basis of independent tensors cL in color space, we write

(16)
∑

L

(cL){αk}
SLK

(
βi · βj , αs(µ

2), ǫ
)

=
∑

{ηk}

〈0|
n∏

i=1

[
Φβi

(∞, 0)αk,ηk

]
|0〉 (cK){ηk}

.

Note that in eq. (16) we keep all Wilson lines strictly on the light-cone (p2
i = 0 and thus

β2
i = 0). Therefore, the soft matrix SLK displays not only single poles corresponding

to large-angle soft gluons, but also double poles associated with overlapping soft and
collinear singularities. Recall that the jet functions Ji also include the regions of over-
lapping soft and collinear singularities. It is for this reason that in the factorization
formula, eq. (13), we have divided each partonic jet Ji jet by Ji, thus removing from
Ji its eikonal part, which is already accounted for in SLK . One observes then that the
ratios Ji/Ji are free of soft singularities: they contain only single collinear poles at each
order in perturbation theory. Similarly, the ‘reduced’ soft matrix

(17) SLK

(
ρij , αs(µ

2), ǫ
)

=
SLK

(
βi · βj , αs(µ

2), ǫ
)

n∏

i=1

Ji

(
2(βi · ni)

2

n2
i

, αs(µ
2), ǫ

)

where

(18) ρij ≡ (βi · βj ei πλij )2

2(βi · ni)
2

n2
i

2(βj · nj)
2

n2
j

.
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is free of collinear poles, and contains only infrared singularities originating from soft
gluon radiation at large angles with respect to all external legs. The kinematic depen-
dence of S on ρij will be explained below.

5. – The cusp anomaly and the jet functions

The third and final ingredient necessary for deriving the constraints on the singu-
larities of on-shell amplitudes is the cusp anomaly. In the following we will recall the
definition of the cusp anomalous dimension and explain its role in governing the kine-
matic dependence of Wilson–line operators. This will allow us first to understand the
structure of the eikonal jet function J to all orders in perturbation theory, and eventually
to constrain the soft function S.

To this end, let us recall some general properties of operators that are composed
of semi-infinite Wilson lines. The first observation is that all radiative corrections to
such operators vanish identically in dimensional regularization, since the corresponding
integrals involve no scale. This trivial result however involves cancellations between ultra-
violet and infrared singularities; therefore, upon renormalization, J becomes non-trivial:
the contribution of each graph equals minus the corresponding ultraviolet counterterm.
As a consequence, using a minimal subtraction scheme, the result for J (or for S) at
each order in αs is a sum of poles in ǫ, without any non-negative powers.

Let us now briefly recall the renormalization properties of Wilson loops with cusps
[6-11,52-54]. Consider first an operator

(19) W
(
γ12, αs(µ

2), ǫ
)

= 〈0|Φn1
(∞, 0)Φn2

(0,−∞) |0〉 ,

involving two semi-infinite rays, both off the lightcone (n2
1, n

2
2 6= 0), which join at the

origin to form a cusp with (Minkowski) angle γ12, where

(20) cosh (γ12) =
(n1 · n2)√
n2

1

√
n2

2

.

The contour closes at infinity and it is smooth everywhere except at the origin. Ref. [53]
has shown that the presence of the cusp along the contour introduces an ultraviolet
singularity which can be removed by a multiplicative renormalization constant, implying
that

d lnW

d lnµ
≡ −Γcusp(γ12, αs(µ

2)) = −Ci
αs(µ

2)

π

[
γ12 coth(γ12) − 1

]
+ O

(
α2

s

)
,(21)

where Ci = CA or CF depending on the representation of the Wilson lines. Considering
the limit where n1 or n2 is near the lightcone one finds that

(22) γ12 ≃ ln

(
2n1 · n2√
n2

1

√
n2

2

)
≫ 1 ,

and

d lnW
(
γ12, αs(µ

2), ǫ
)

d lnµ
= −γ

(i)
K (αs(µ

2))

2
ln

(
2n1 · n2√
n2

1

√
n2

2

)
+ O(1) .(23)
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It is clear that in the strictly light-like limit, the r.h.s. of (23) and (21) become singular.
This is a collinear singularity, appearing on top of the ultraviolet singularity already
present in W owing to the cusp. Therefore, if we consider directly the renormalization
of the analogue of W with one of the rays being strictly lightlike, say n2

2 = 0 — precisely
the case of J in eq. (15) — we expect a singular anomalous dimension. Indeed, in
dimensional regularization the renormalization group equation of J takes the form [39]

µ
d

dµ
lnJi

(
2(β · n)2

n2
, αs(µ

2), ǫ

)
≡ − γJi

(
2(β · n)2

n2
, αs(µ

2), ǫ

)
(24)

=
1

2
δJi

(
αs(µ

2)
)
− 1

4
γ

(i)
K

(
αs(µ

2)
)

ln

(
2(β · n)2

n2

)
− 1

4

∫ µ2

0

dξ2

ξ2
γ

(i)
K

(
αs(ξ

2, ǫ)
)
,

where the third term is singular, O(1/ǫ). Having seen the origin of this singularity in (23),
it is not surprising that the dependence of γJ on the kinematic variable 2(β · n)2/n2 —

the second term in (24) — is governed by the same anomalous dimension, γ
(i)
K (αs), that

governs the singularity of γJi
— the third term in (24). This relation between kinematic

dependence and singular terms, which we have now observed in γJi
, is a general property

of this class of operators which will be essential for what follows.
To understand it from a different angle, let us now have another look at eqs. (21)

and (24) considering the symmetry property of the eikonal Feynman rules (10) under
rescaling of the eikonal velocity vectors. Clearly eq. (21) is consistent with this symmetry:
any function of γ12 defined in (20) would be. In contrast, in the strictly lightlike case
of (24), there is no kinematic variable that could be consistent with this symmetry. J can
only depend on 2(β · n)2/n2, as indeed can be confirmed by an explicit calculation, and
therefore it breaks the rescaling symmetry: it depends explicitly on the normalization
of β. Note that rescaling of the vector nµ, which is not light-like, remains a symmetry.

Solving (24) we obtain a closed form expression for the eikonal jet [39], in terms of
anomalous dimensions which depend just on the coupling,

Ji

(
2(βi · ni)

2

n2
i

, αs(µ
2), ǫ

)
= exp

{
1

2

∫ µ2

0

dλ2

λ2

[
1

2
δJi

(
αs(λ

2, ǫ)
)

− 1

4
γ

(i)
K

(
αs(λ

2, ǫ)
)

ln

(
2(βi · ni)

2 µ2

n2
iλ

2

)]}
.(25)

We see that the entire kinematic dependence of J is associated with the breaking of
the rescaling symmetry with respect to the lightlike direction βµ; it is directly related
to presence of double poles in J , and it is governed by the cusp anomalous dimension,

γ
(i)
K (αs). In the following, we will show how this observation, made in [39], allowed us to

constrain the kinematic dependence of the soft function S.
Before turning to the soft function, let us quote the equivalent expression for the

partonic jet Ji, which will be of use in the following. The partonic jet has an infrared
singularity structure similar to the eikonal jet, however it has a finite ultraviolet anoma-
lous dimension, the one we have encountered in (5),

(26) µ
d

dµ
lnJi

(
(2pi · ni)

2

n2
iµ

2
, αs(µ

2), ǫ

)
≡ − γJi

(αs(µ
2)) .
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As a consequence, the partonic jet function can be written as

Ji

(
(2pi · ni)

2

n2
iµ

2
, αs(µ

2), ǫ

)
= HJi

(
αs

(
(2pi · ni)

2

n2
i

)
, ǫ

)
exp

{
− 1

2

∫ µ2

0

dλ2

λ2
γJi

(
αs(λ

2, ǫ)
)

+
Ti · Ti

2

∫ (2pi·ni)
2

n2
i

0

dλ2

λ2

[
− 1

4
γ̂K

(
αs(λ

2, ǫ)
)
ln

(
(2pi · ni)

2

λ2 n2
i

)
+

1

2
δ̂S(αs(λ

2, ǫ))

]}
,(27)

whereHJ is a finite coefficient function, independent of µ2. Eq. (27) displays the fact that
in addition to the collinear singularities generated by γJi

the jet function (14) involves
soft (eikonal) singularities; these are summarized by the second line of (27). Beyond

the γ
(i)
K terms, one finds single pole terms governed by δ

(i)

S
. This function, which is

defined in eqs. (4.7) and (4.9) in [39], does not depend on the spin of parton i and it
has a maximally non-Abelian structure. For simplicity, we further assumed here that

δ
(i)

S
admits Casimir scaling, δ

(i)

S
= Ti · Ti δ̂S , although this may not hold beyond three

loops (and it would not be important in what follows). In contrast, γJi
, which governs

the collinear singularities, does depend on the spin of parton i (it differs for quarks and
for gluons, see Appendix A of [41]) and it is not maximally non-Abelian. As anticipated,
the double poles in (25) and (27) are the same, while single poles differ.

6. – Derivation of the constraints on soft singularities

We are finally in a position to derive the promised constraints on soft singularities. We
will show, in particular, that the relation established above, considering the case of the
eikonal jet, between kinematic dependence of single pole terms and the cusp anomalous
dimension, generalises to soft singularities in multi-leg amplitudes. These singularities
are described by the function S in (13). S is defined by (16) and it obeys a matrix
evolution equation of the form

(28) µ
d

dµ
SIK (βi · βj , αs, ǫ) = −

∑

J

ΓS
IJ (βi · βj , αs, ǫ) SJK (βi · βj , αs, ǫ) .

The soft anomalous dimension matrix ΓS depends on all the kinematic invariants in
the process, and it is a priori a very complicated object. It encapsulates the correlation
between colour and kinematic degrees of freedom, which may be of increasing complexity
as one considers higher loop corrections (fig. 2).

We recall that in S all the Wilson lines are lightlike, β2
i = 0, ∀i. Therefore, similarly

to J , we expect this function to break the rescaling invariance with respect to each of the
velocities βi. This was already taken into account in assigning the arguments in S and
in ΓS : these functions depend on the set of Lorentz invariants βi · βj , and thus violate
the rescaling symmetry. We will be able to constrain ΓS – and thus S — because we
know exactly how this symmetry is violated.

The key point is that the amplitude M itself cannot depend on the normalization
one chooses for the velocities appearing in eikonal functions. Thus, in the factorization
formula, eq. (13), this dependence must cancel out. This cancellation can only involve
the eikonal functions S and Ji, not the partonic jet or the hard function, which depend
directly on the dimensionful kinematic variables pi. The form of the factorization formula
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(13) implies in fact that the cancellation of any rescaling violation must occur within the
reduced soft function S, defined in (17). This is intuitively clear: we saw that rescaling
violation is intimately related to the presence of double poles, and that both are governed

by the cusp anomalous dimension γ
(i)
K . The soft function S, much like the eikonal jets, is

defined with light-like Wilson lines, thus including regions of overlapping ultraviolet and
collinear singularities, which are the origin of double poles as well as rescaling violation
at the single pole level. Upon dividing S by the product of all eikonal jets, as done in
(17), these regions are removed, yielding S, which describes large–angle soft singularities,
and is entirely free of double poles and of the associated violation of rescaling symmetry
at the single pole level. Given the kinematic dependence of S and Ji, and the expected
recovery of the symmetry βi → κiβi, ∀i, we deduce that S can only depend on the
variables ρij , defined in (18).

To proceed, it is useful to consider the renormalization group equation for the reduced
soft function. In analogy with (28) we have

(29) µ
d

dµ
SIK (ρij , αs, ǫ) = −

∑

J

ΓS
IJ (ρij , αs) SJK (ρij , αs, ǫ) .

In contrast to ΓS , the anomalous dimension of the reduced soft function, ΓS , is finite (S
itself has only single poles) and invariant under rescalings, as reflected in the fact that it
must depend on βi though ρij only. Using the definition of the reduced soft function in

eq. (17) we can directly relate the anomalous dimension ΓS to ΓS and to the anomalous
dimension of the eikonal jets, γJi

of eq. (24). We obtain

ΓS
IJ (ρij , αs) = ΓS

IJ (βi · βj , αs, ǫ) − δIJ

n∑

k=1

γJk

(
2(βk · nk)2

n2
k

, αs, ǫ

)

= ΓS
IJ (βi · βj , αs, ǫ) − δIJ

n∑

k=1

[
− 1

2
δJk

(αs)(30)

+
1

4
γ

(k)
K (αs) ln

(
2(βk · nk)2

n2
k

)
+

1

4

∫ µ2

0

dξ2

ξ2
γ

(k)
K

(
αs(ξ

2, ǫ)
)]
.

This equation implies highly non-trivial constraints on soft singularities. It tells us pre-
cisely how the double poles and the rescaling violation of the single poles in ΓS cancel
out. In particular, observing that the jet terms γJk

are diagonal in colour space (they
are proportional to the identity matrix), we deduce that

• off diagonal terms in ΓS must be finite, and must depend only on conformal cross

ratios,

(31) ρijkl ≡
(βi · βj)(βk · βl)

(βi · βk)(βj · βl)
=

(
ρij ρkl

ρik ρjl

)1/2

e−iπ(λij+λkl−λik−λjl)

which can be interchangeably expressed in terms of βi · βj (the arguments of ΓS),

or in terms of ρij (the arguments of ΓS);
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• diagonal terms in ΓS have a singularity determined by γK , according to

(32) ΓS
IJ (βi · βj , αs, ǫ) = δIJ

n∑

k=1

1

4

∫ µ2

0

dξ2

ξ2
γ

(k)
K

(
αs(ξ

2, ǫ)
)

+ O(ǫ0)

and must contain finite terms depending on βi · βj in a way tailored to combine
with the (βi · ni)

2/n2
i dependence of the various jet functions to generate ρij .

The constraints on the structure of the anomalous dimension ΓS can be compactly
expressed by taking a logarithmic derivative of eq. (30) with respect to (βi ·ni)

2/n2
i . On

the l.h.s one uses the chain rule: for any function F which depends on (βi · ni)
2/n2

i only
through the combinations ρij of (18), one has

(33)
∂

∂ ln ((βi · ni)2/n2
i )
F (ρij) = −

∑

j 6=i

∂

∂ ln ρij
F (ρij) .

On the r.h.s of eq. (30), the derivative with respect to (βi · ni)
2/n2

i acts only on the
corresponding γJi

term. The resulting equations are

(34)
∑

j 6=i

∂

∂ ln(ρij)
ΓS

IJ (ρij , αs) =
1

4
γ

(i)
K (αs) δIJ , ∀i, I, J .

Thus, there are n constraints for an n legged amplitude, each of which is a matrix
equation (holding for each matrix element (I, J)). This set of constraints holds in any
colour basis, and to all orders in perturbation theory. Its most intriguing aspect is that
it correlates the kinematic dependence of the (reduced) soft matrix with its dependence
on the colour degrees of freedom: the l.h.s in (34) is a sum of non-diagonal matrices in
colour space, while the r.h.s is proportional to the identity matrix.

7. – Solving the equations

Given n independent equations and n(n − 1)/2 kinematic variables it is clear at the
outset that eq. (34) alone is not sufficient to uniquely fix the kinematic dependence of

ΓS in the multi-leg case. For n = 2, 3 eq. (34) does have a unique solution (see sec. 4
and Appendix A in [39]). This is already an important step, extending previously known
results for the singularity structure to all loops. For n ≥ 4 partons, however, the number
of kinematic variables exceeds the number of equations, and additional constraints will be
needed. Nevertheless, we will see that a minimal solution, consistent with all information
known to date, naturally emerges out of eq. (34).

Considering eq. (34), we note that γ
(i)
K depends implicitly on the colour representation

of parton i. To solve the equations we need to make this dependence explicit. Given

that γ
(i)
K admits Casimir scaling (9) at least to three loops, we write

(35) γ
(i)
K (αs) ≡ Ci γ̂K (αs) + γ̃

(i)
K ,
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where γ̃
(i)
K = O(α4

s) accounts for possible dependence on the representation of parton
i through higher-order Casimir operators. It is presently an open question(3) whether
such terms appear.

Our constraints now take the form

∑

j 6=i

∂

∂ ln(ρij)
ΓS (ρij , αs) =

1

4

[
Ci γ̂K (αs) + γ̃

(i)
K (αs)

]
, ∀i .(36)

Using the linearity of these equations we can obviously write the general solution as a
superposition of two functions

(37) ΓS = ΓS
Q.C. + ΓS

H.C.

which are, respectively, solutions of the equations

∑

j 6=i

∂

∂ ln(ρij)
ΓS

Q.C. (ρij , αs) =
1

4
Ti · Ti γ̂K (αs) , ∀i ,(38)

∑

j 6=i

∂

∂ ln(ρij)
ΓS

H.C. (ρij , αs) =
1

4
γ̃

(i)
K (αs) , ∀i .(39)

Here Q.C. and H.C. stand for Quadratic Casimir and Higher-order Casimir, respectively.

Let us now focus on determining ΓS
Q.C., leaving aside ΓS

H.C. = O(α4
s), which will be briefly

discussed in sec. 8.

A solution for ΓS , obeying eq. (38), is given by

(40) ΓS (ρij , αs) = −1

8
γ̂K (αs)

∑

(i,j)

ln(ρij)Ti · Tj +
1

2
δ̂S(αs)

n∑

i=1

Ti · Ti ,

where
∑

(i,j) in the first term in (40) indiactes a sum over all pairs of hard partons,
forming a colour dipole; each dipole is counted twice in the sum. Note this term carries
the entire dependence on kinematics, correlating it with the colour structure. In contrast,
the second term is independent of kinematics and is proportional to the unit matrix in
colour space. Analysis of the n = 2 case (the Sudakov form factor) allows to identify this
function (see eqs. (4.7) and (4.9) in [39]) as the one appearing at single-pole level in the
partonic jet, the last term in eq. (27).

It is easy to verify that (40) satisfies (38): taking a derivative with respect to ln(ρij),
for specific partons i and j, isolates the color dipole Ti · Tj ; summing over j for fixed i,
and enforcing colour conservation, given by eq. (6), one recovers eq. (38).

(3) An argument against Casimir scaling has been made [55, 56], based on the dependence of

γ
(i)
K on the representation in the strong coupling limit at large Nc. The argument is based on a

class of antisymmetric representations with k indices, where the ratio k/Nc is kept fixed when

Nc → ∞; in this case the strong coupling limit of γ
(i)
K does not admit Casimir scaling.



16 E. GARDI and L. MAGNEA

Integrating the renormalization group equation (29), with ΓS given by eq. (40), we
obtain an expression for the reduced soft function,

S (ρij , αs, ǫ) = exp

{
− 1

2

∫ µ2

0

dλ2

λ2

[
1

2
δ̂S(αs(λ

2, ǫ))

n∑

i=1

Ti · Ti

− 1

8
γ̂K

(
αs(λ

2, ǫ)
)∑

(i,j)

ln (ρij) Ti · Tj

]}
.

(41)

Substituting eq. (41) into the factorization formula, eq. (13), together with the corre-
sponding expression for the partonic jet, eq. (27), we obtain a complete description of
the singularity structure of the amplitude, eq. (5). Note that the Z factor and the hard
amplitude H in (4) are separately independent of the auxiliary vectors ni, as they must
be. In contrast, the various elements in the factorization formula (13) do depend on these
vectors. The cancellation of this dependence is non-trivial: it is guaranteed by the fact
that S admits the constraints of (34), and by the fact that the kinematic dependence
of the singularities of the partonic jet function (27) matches the one of the eikonal jet,
eq. (25). It is essential that all the single pole terms that carry ni dependence in the
various functions are governed by the cusp anomalous dimension γK alone. Indeed, to
obtain eq. (5), we combine terms proportional to γK in the soft and jet functions. In
doing so we use colour conservation,

∑
j 6=i Tj = −Ti, as well as the relation between the

kinematic variables of the various functions,
(42)

ln

(
(2pi · ni)

2

n2
i

)

︸ ︷︷ ︸
Ji

+ ln

(
(2pj · nj)

2

n2
j

)

︸ ︷︷ ︸
Jj

+ ln




(
βi · βj eiπλij

)2

2(βi · ni)
2

n2
i

2(βj · nj)
2

n2
j




︸ ︷︷ ︸
S

= 2 ln(2pi ·pj eiπλij ).

Note also that the poles associated with δ̂S(αs(λ
2, ǫ)) cancel out between the soft and

jet functions, given by eqs. (41) and (27), respectively.
It is interesting to compare at this point our approach to that of Becher and Neubert

in Ref. [41]. The final expression at the amplitude level, eq. (5), is the same. The set of
constraints, eq. (48) in [41], is also equivalent. The underlying factorization scheme, and
consequently the arguments leading to these constraints, are however somewhat different.
In particular, ref. [41] does not define jet functions using auxiliary Wilson lines (ni in
our formulation); instead, it keeps track of the jets through their mass, taking pi slightly
off the light cone, p2

i 6= 0. In their formulation, the equivalent of eq. (42) takes the form
(eq. (43) in [41])

(43) ln

(−p2
i

µ2

)

︸ ︷︷ ︸
Ji

+ ln

(
−p2

j

µ2

)

︸ ︷︷ ︸
Jj

+ ln

(
2 pi · pj eiπλijµ2

(−p2
i )(−p2

j )

)

︸ ︷︷ ︸
S

= ln

(
2pi · pj eiπλij

µ2

)
,

which is again realised owing to the fact that in each function the corresponding logarithm
is governed by the cusp anomalous dimension. Recall that in our derivation the argument
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of the reduced soft function is dictated by rescaling invariance; in contrast, in [41] the
argument of the soft function is essentially dictated by power counting, and it is not
invariant with respect to rescaling.

8. – Possible contributions beyond the sum-over-dipoles formula

As already mentioned, the ansatz of (40) does not in general provide a unique solution
of the available constraints. Thus eq. (5), while consistent with all existing calculations,
may still be missing some large-angle soft singularities beyond a certain loop order. Such
further singularities are however strongly constrained both in their functional form and in
their color structure. It is worthwhile emphasizing that calculations in the large–Nc limit
cannot resolve the question at hand, since planar eikonal diagrams necessarily factorize
into a product of colour dipoles, those made of adjacent Wilson lines, and are therefore
automatically consistent with the sum-over-dipoles formula. The analysis must therefore
be done at finite Nc. Ref. [39] has identified two classes of corrections that may appear,
and although some progress was made, neither of the two can be excluded to all orders
at present.

The first class of corrections corresponds to potential higher-order Casimir contri-
butions. In case higher-order Casimir operators do show up in the cusp anomalous
dimension at some loop order, i.e. γ̃K in (35) does not vanish, the anomalous dimension
of the reduced soft function of any amplitude will receive additional corrections. These
corrections are subject to the very stringent constraints of (39). For amplitudes with two
or three legs these corrections still have a dipole structure (see e.g. Appendix A in [39]),
however, for amplitudes with four legs or more, non-trivial structures that couple more
than two hard patrons may arise.

The second class of corrections, which may be present even if γK admits Casimir
scaling, is given by solutions of the homogeneous equation associated with eq. (38).

Indeed, adding to our ansatz any function ∆S(ρij) satisfying

(44)
∑

j 6=i

∂

∂ ln(ρij)
∆S (ρij , αs) = 0 ∀i ,

one obtains a new solution of eq. (38). Eq. (44) is solved by any function of the confor-
mal invariant cross ratios defined in (31). Any such solution has the property of being
invariant with respect to velocity rescalings without involving the jets. Such functions
can of course be written directly in terms of the original kinematic variables pi · pj and
are therefore not constrained by soft–collinear factorization.

Interesting examples for ∆S in the four parton case were proposed in [39]:

∑

j,k,l

∑

a,b,c

i fabc Ta
j Tb

kTc
l ln (ρijkl) ln (ρiklj) ln (ρiljk) ,(45)

∑

j,k,l

∑

a,b,c

dabc Ta
j Tb

kTc
l ln2 (ρijkl) ln2 (ρiklj) ln2 (ρiljk) ,(46)

where the sum over partons is understood to exclude identical indices, and where colour
conservation, Td

i = −Td
j−Td

k−Td
l , has been taken into account. Note that these functions

are, by contruction, symmetric under the exchange of Wilson lines (Bose symmetry): this
correlates colour and kinematic degrees of freedom. These functions, moreover, do not
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contribute in the limit where any two hard partons become collinear, and therefore they
cannot be excluded using the properties of the splitting amplitude discussed in [41].

Functions of conformal-invariant cross ratios such as (45) correlate colour and kine-
matic degree of freedom of four partons. They cannot arise at two loops because two-
loop webs can connect at most three partons. This explains, a posteriori, the findings
of ref. [38], which explicitly showed that there are no new correlations generated at the
two loop order beyond those of pairwise interactions(4). Non-trivial corrections to the
the sum-over-dipoles formula can therefore first arise at three loops.

Unfortunately, at three loops no complete calculation is available yet. However, sev-
eral important steps have been taken. First, as already emphasized in [39], three-loop
corrections to this formula must satisfy eq. (44) — they must be functions of conformal
invariant cross ratios, and they must vanish identically in amplitudes of less than four
legs. Beyond that, it was explicitly shown that the class of three-loop diagrams con-
taining matter loops is consistent with the sum-over-dipoles formula [61]. A further step
was taken in Ref. [41], where it was shown that if dependence on the kinematic variables
is assumed to be single–logarithmic, there is no possible structure that could appear at
three-loops beyond the sum-over-dipoles formula. This argument is based on eliminat-
ing all possible structures using the factorization constraints discussed above, together
with Bose symmetry, and an additional constraint on the singularity structure in the
limit where two hard partons become collinear based on the properties of the splitting
amplitude. It should be emphasized that the assumption of single–logarithmic kinematic
dependence is crucial here, so the question of possible corrections to the sum-over-dipoles
formula at three loops is still open.

As mentioned above, at four loops a new class of corrections may appear [39], induced
by higher-order (quartic) Casimir contributions to the cusp anomalous dimension. Ad-
dressing this issue, Ref. [41] examined again all possible structures that could appear at
four loops under the assumption of single–logarithmic kinematic dependence. Also here
the conclusion is that no such structure survives the constraints.

9. – Conclusions

We have reviewed recent exciting progress in determining the infrared singularities of
on-shell scattering amplitudes in massless non-Abelian gauge theories. It is now firmly
established [39, 41] that the cusp anomalous dimension has a central role in governing
soft singularities of multi-leg amplitudes with an arbitrary number of legs and for a
general Nc. This role is summarized by a set of differential equations (34) constraining
the kinematic dependence of the soft anomalous dimension matrix of any amplitude, to
any loop order, in an arbitrary colour basis. These constraints are a direct consequence
of factorization and of the special properties of soft gluon interactions with massless hard
partons.

The simplest solution to this set of constraints yields a closed form expression for the
singularities of any massless scattering amplitude, eq. (5). According to this formula the
correlations induced by soft gluon interactions between colour and kinematic degrees of
freedom take the form of a sum over colour dipoles. No new correlations are generated
by multi-loop webs (fig. 2): the colour matrix structure remains the same as at one loop,

(4) Note that new structure does appear in the case of scattering involving heavy quarks, as
shown in refs. [57-60].
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and the cusp anomalous dimension alone governs all non-collinear singularities.
We have further shown that possible corrections to this simple sum-over-dipoles for-

mula belong to one of two categories: ones that are generated by potential higher-order
Casimir contributions to the cusp anomalous dimension, which must then satisfy eq. (39),
and ones that can be written in terms of conformal invariant cross ratios (31), solving
the homogeneous equations (44). The former may contribute to any amplitude starting
from four loops, while the latter can only appear in amplitudes with four or more hard
partons, starting at three loops. So far all explicit calculations are consistent with the
sum-over-dipoles formula, but it remains an open question whether such corrections do
show up at some loop order.
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