

Search for SUSY in Dijet Events with Novel Data-Driven Background Estimation

<u>Henning Flächer</u> (CERN) for the CMS Collaboration

- Motivation for di-jet search
 - Dark Matter at Colliders
- Missing Energy Signatures in Di-Jet Events
 - robust analysis techniques
 - data-driven background estimates
- Conclusions

La Thuile 2009 (March 1st -7th, 2009)

A Look at the Energy and Matter Content of the Universe

0

Mar. 1st-7th, 20

- Cosmic microwave background gives precise information about dark matter content of the universe
- WMAP 5 year result:

- Only 5% is made from baryonic matter, 23% from unknown "dark matter"
- Attractive explanation for Dark Matter:
 - new weakly interacting particle

La Thuile 2009

- Dark Matter candidate is a weakly interacting massive particle (WIMP)
- Many New Physics Models provide viable dark matter candidates, e.g.
 - R-parity conserving Supersymmetry
 - minimal super gravity mSugra → neutralino is WIMP
 - Gauge mediated SUSY → gravitino is WIMP (too light)
 - Universal Extra Dimensions
 - Warped Extra Dimensions
 - Little Higgs Models
 - Technicolor Models
- Production of WIMP's in cascade decays of heavy new particles
 - WIMP's escape the detector and remain undetected
 - Leads to a missing energy signature

Mar. 1st-7th,

An Example from SUSY

e.g. gluino pair-production

lots of missing energy, many jets, and possibly leptons in the final state

Missing Energy: • from LSP

Multi-Jets:

• from cascade decay (gaugino)

Multi-Leptons:

• from decay of charginos and neutralinos

Mar. 1st-7th, 2009

00

Mar. 1st-7th, 20(

• pair production of new heavy particles

Missing Energy:

• Nwimp - end of the cascade

Multi-Jets:

 \bullet from decay of the Ns (possibly via heavy SM particles like top, W/Z)

Multi-Leptons:

• from decay of the N's

Model examples are Extra dimensions, Little Higgs, Technicolour, etc

La Thuile 2009

Missing Energy Measurement

CMS

00

Vlar. 1st-7th, 20

- "Traditional" approach:
 - Calculate missing energy as negative vectorial sum of all calorimeter deposits
 - Susceptible to mismeasurements from, e.g.
 - Calorimetric noise (hot cells)
 - Cosmic rays
 - Beam-gas interactions
 - Beam-halo events
 - Difficult to understand in the early days of data taking
- Need for robust measurement techniques

IDEA:

infer missing energy from well measured objects by applying transverse energy/momentum conservation

Missing Energy from Tevatron during several cleanup stages:

Di-jet Analysis

- New CMS study: PAS-SUS-08/005
 - CMS PTDR II focused on inclusive SUSY searches with \geq 3 jets
- Motivated in addition by recent paper by
 - L. Randall, D.Tucker-Smith (Phys.Rev.Lett.101:221803,2008)
- Idea:
 - Squarks pair produced and directly decaying to quarks and neutralinos
- Event topology
 - Only two jets + missing energy
- Background:
 - <u>QCD dijet events</u>
 - No real missing momentum
 - $\underline{Z \rightarrow vv \text{ events}}$
 - Irreducible background due to real missing E_T
 - $W \rightarrow |v|$
 - Leads to missing Et when lepton not reconstructed or out of acceptance

Transverse momentum

 E_{T} of jets equal in magnitude

Jets back-to-back in phi

conservation

LSP squark (and similar) SP LSP LSP le let SIGNAL topology jet BACKGROUND topology (QCD) let

0

Mar. 1st-7th, 2(

Event Selection

- Trigger
 - di-jet trigger (2 jets with p_T > 150 GeV)
- Preselection:
 - Jet Selection
 - 2 jets with $p_T > 50 \text{ GeV}$, $F_{em} < 0.9$
 - 3rd jet veto: $p_T < 50 \text{ GeV}$
 - Δφ(MHT,jet_{1,2,3}) > 0.3 rad
 - |η_{j1}|<2.5
 - Lepton veto's:
 - no e, μ with pt >10 GeV
- t Full Selection
 - HT > 500 GeV
 - $\alpha (\alpha_{T}) > 0.55$
 - [Δφ < 2π/3]

Accounting for finite resolution

(not optimised)

Mar. 1st-7th

- HT: Scalar sum of Jet p_T's:
 HT = p_T^{Jet1} + p_T^{Jet2}
 - > MHT: Jet based missing E_T > MHT = - $(p_T^{Jet1} + p_T^{Jet2})$

Main variables of interest

> MT: Transverse Mass

$$M_{T} = \sqrt{\left(\Sigma_{i} E_{T_{i}}\right)^{2} - \left(\Sigma_{i} p_{x_{i}}\right)^{2} - \left(\Sigma_{i} p_{y_{i}}\right)^{2}}$$
$$= \sqrt{HT^{2} - MHT^{2}}$$

- > but also p_T of a possible 3^{rd} jet •
- $\succ \Delta \phi$ between the jets
- > α (α_{T}) from 2 leading jets

Discriminating Variables

- Exploit kinematics of the event
 - > Define new variable α (Randall Tucker-Smith):

$$\alpha = \frac{E_{T j2}}{M_{j1j2}} = \frac{E_{T j2}}{\sqrt{2E_1E_2(1 - \cos\theta)}}$$

- > Can be at most 0.5 for QCD, $\alpha < 0.5$ > $\alpha > 0.5$ implies missing momentum
- > And transverse α_T :

$$\alpha_{T} = \frac{E_{T j2}}{M_{T j1j2}} = \frac{\sqrt{E_{T j2} / E_{T j1}}}{\sqrt{2(1 - \cos \Delta \varphi)}}$$

Exploits that for QCD jets need to be back-to-back and of equal magnitude
 For QCD dijets α = 0.5

Analysis does not rely on calorimetric MET, MHT inferred from 2 jets

early data

 \Rightarrow well suited for

Mar. 1st-7th, 20(

8

huile 2009

Signal & Background yields

• Expected event yields for 1fb⁻¹

Selection cut	QCD	tīt,₩,Ζ	$Z \to \nu \bar{\nu}$	LM1
Trigger	$1.1 imes10^8$	147892	1807	25772
Preselection	$3.4 imes10^7$	9820	878	2408
HT > 500 GeV	$3.2 imes10^6$	2404	243	1784
$\alpha > 0.55$	0	7.2	19.7	227.6
$\alpha_{\rm T} > 0.55$	0	19.9	58.2	439.6
$\Delta \phi_{j1,j2} < 2\pi/3$	0	18.7	57.2	432.4

=> Signal/Background = 5.6

Reminder: desired topology is 2 squarks decaying to 2 squarks and 2 neutralinos (LSPs)

Sample $\tilde{q} \tilde{q}$ (other) other Events *ĝ ĝ* $\tilde{q} \tilde{q}$ (invisible) *q̃ ĝ̃* 34% LM1 432 39% 3% 1% 22% 18% LM2 132 46% 33% 0% 2% LM3 138 69% 17% 12% 0% 2% LM4 195 49% 10% 36% 3% 1%

•Variation of jet energy scale and resolution

>10% gaussian smearing of jet p_T 's and of 0.1 rad of ϕ measurement

>Scaling of jet energy by \pm 5%

>Scaling of jet energy by \pm 3% for endcap/forward ($|\eta|$ >1.4)

>Stable S/B for all variations

Mar. 1st-7th, 2009

Data-Driven Background Studies

- LHC data in explores a new energy regime
 - Monte Carlo simulations should not be taken at face value
 - develop data-driven techniques
 - identify data control samples
- Two main sources of background:

• QCD

- Seems to be under control but huge cross-section
- MC uncertainties due to higher order QCD effects

• $Z \rightarrow vv + Jets$

- represents an irreducible background
- two jets + real missing E_T
- Ideally study $Z{\rightarrow}\mu\mu$ events but not enough statistics in the early days
- Other control samples:
- W + Jets
- Photon + Jets as shown in CMS-AN 36/2008

Central Production of Heavy Objects

- Idea: define signal enriched and depleted regions by splitting data sample in events with first jet in barrel and forward region
 - > SUSY jets are more central
 - > Use ratio of events $R_a = \alpha_T > 0.55 / \alpha_T < 0.55$ in

(signal depleted) forward η region to predict background in (signal enriched) barrel region.

See also: Background Modeling in New Physics Searches Using Forward Events at LHC. V. Pavlunin, D. Stuart, Phys.Rev.D78:035012,2008.

Pre-selection (no η cut) + HT > 500 GeV

st-7th, 2009

n Dependence of Matrix Method

• R_{α} flat for background as function of $|\eta_{i1}|$. $\alpha_{_{T}}$ and $|\!\eta_{_{i1}}\!|$ can be used for ABCD-matrix method

Ω

13

Measure $R\alpha_{\tau}$ in 2.5 < $|\eta|$ < 3.0 region.

Test Background Estimation from Data

Variation of HT cut Idea: Increase background to check that $R\alpha_{\tau}$ is flat in $|\eta|_{i1}$ when signal sufficiently diluted

 Loosen HT cut to decrease signal to background ratio.

• As HT loosened $|\eta|_1$ dependence gets flatter

=> Clear indication that at HT > 500 GeV signal is present

15

Ŀ

Ω

Data Driven Background Estimations

An illustrative example: $Z \rightarrow vv+jets$ Irreducible background for Jets+ E_t^{mis} search

Data driven strategy:

• define control samples and understand their strength and weaknesses:

Z→ll+jets

Strength:

- very clean, easy to select **Weakness:**
- low statistic: factor 6 suppressed wrt. to $Z \rightarrow \! \nu \nu$

W→lv+jets

Strength:

- larger statistic Weakness:
- not so clean, SM and signal contamination

 γ +jets

E, mis

Strength:

ν

- large stat, clean for high E_γ
 Weakness:
- not clean for E_{γ} <100 GeV,
- possible theo. issues for

normalization (u. investigation)

La Thuile 20

16

B

Mar.

γ +jets: Estimate Z to invisible

 γ +jets selection & properties:

- E_γ>150 GeV
- \rightarrow clean sample: S/B>20
- \rightarrow ratio σ [Z+jet]/ σ [γ +jet] constant

<u> y+jets: Strategy:</u>

- remove γ from the event: $\rightarrow \gamma$ becomes E_{T}^{mis}
- take σ [Z+jet]/ σ (γ +jet) for E_{γ}>200 GeV from MC or measure in data

Mar. 1st-7th, 2009

Thuile 2009

Π

11

Conclusions

CMS

- Good prospects to find Dark Matter Candidate at LHC
- Di-jet analysis promising, exploiting particular event topology
 - α (α_T) and $\Delta \phi$ very powerful
 - Shown results do not rely on calorimetric MET
- Data-driven background determinations have been developed
 - Subtraction of all backgrounds using matrix method
 - checks on real data in place
 - $Z \rightarrow vv$ can be obtained from γ + jets

CMS PAS SUS-08-002

CMS PAS SUS-08-005

- Extension to calorimetric MET independent multi-jet analyses under study
- Benchmark points (e.g. LM1) could be observed in dataset of ~100pb-1
 - Assuming detector performance is understood
- Eagerly awaiting first collision data in fall of this year
 - Exciting times are ahead!

Mar. 1st-7th.

BACKUP

Experimental Evidence for Dark Matter

- Zwicky1933
 - rotation frequencies of galaxies
 - high rotation speed at large radii suggests matter far from the center of the galaxy that is not emitting light
 - Dark matter within the galactic halo

- Bullet cluster
 - collision of two galaxy clusters
 - mass distribution shown in blue
 - determined with gravitational lensing
 - hot gas distribution in red
 - Most of the mass does not interact, only visible matter (gas) is slowed down

Credit: X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical: NASA/STScl; Magellan/U.Arizona/D.Clowe et al.; Lensing Map: NASA/STScl; ESO WFI; Magellan/U.Arizona/D.Clowe et al.

- SUSY partner for every SM particle (with ½ unit of spin different)
 - spin O Sfermions (squark, sleptons)
 - spin ½ Gauginos (chargino, neutralino)
- \bullet SUSY mass scale expected to be ~1TeV in order to:
 - Solve hierarchy problem (stabilize Higgs mass to radiative correct
 - Allow unification of strong and electroweak forces
 - Provide sensible dark matter candidate (R-parity)
 - Naturalises scalar (Higgs) sector of SM
- Downside of SUSY
 - Large parts of parameter space ruled out already
 - Many parameters

0

Mar. 1st-7th, 2(

A closer look at SUSY yields

• CMS SUSY benchmark points

Sample	mo	m1/2	A ₀	tan β	$sign(\mu)$	σ NLO	(LO)	lightest <i>q</i>	$\tilde{\chi}_1^0$
-	(GeV)	(GeV)		V		(pb)	(pb)	(GeV)	(GeV)
LM1	60	250	0	10	+	54.86	(43.28)	$410(\tilde{t}_1)$	97
LM2	185	350	0	35	+	9.41	(7.27)	582 (\tilde{t}_1)	141
LM3	330	240	0	20	+	45.47	(34.20)	446 (\tilde{t}_1)	94
LM4	210	285	0	10	+	25.11	(19.43)	$483 (\tilde{t}_1)$	112

• Reminder: desired topology is 2 squarks decaying to squarks and 2 neutralinos (LSPs)

Sample	Events	$\tilde{q} \tilde{q}$ (invisible)	q̃ q̃ (other)	<i>q̃ ĝ̃</i>	<i>ĝ ĝ</i>	other
LM1	432	39%	22%	34%	3%	1%
LM2	132	46%	33%	18%	0%	2%
LM3	138	69%	17%	12%	0%	2%
LM4	195	49%	10%	36%	3%	1%

- Dominated by squark-squark, but not only:
 - Squark gluino contribution, where gluino decays to squark+quark
 - In LM1: small mass difference between gluino and squark => low p_T 3rd jet

Production process	$p_T^{j3} < 30 \mathrm{GeV}$	$p_T^{j3} < 50 \mathrm{GeV}$	$p_T^{j3} < 70 \mathrm{GeV}$
<i>q̃ q̃</i>	80%	61%	51%
<i>q̃ g̃</i>	18%	34%	44%
Ĩ Ĩ	1%	3%	5%

Indeed observe increase in squark-gluino contribution when relaxing 3rd jet veto

For comparison:

QCD: O

Z→vv : 57 W/Z: 19 Total: 76

C La Thuile 2009

Background estimation from data (II)

0

24

Variation of 3rd jet p_T

Idea:

dilute signal by increasing background contribution Loosen cut on 3rd jet p_T to create missing E_{T} => tail in $\alpha(\alpha_T)$

Test if $R\alpha_{\tau}$ is stable Slope should be observed when signal contribution becomes sizable

 \Rightarrow Slope is observed for hard enough jet veto