

Les Rencontres de Physique de la Vallee d'Aoste

1-7 March 2008, La Thuile, Aosta Valley, Italy

Hot topics at Belle

Roman Mizuk (ITEP, Moscow)

XYZ mesons

Dalitz analyses of B \rightarrow K π^+ ψ' and B \rightarrow K π^+ χ_{c1}

Charmonium renaissance: XYZ mesons

S.L.Olsen, 0901.2371

state	M (MeV)	Γ (MeV)	J^{PC}	Decay Modes	Production Modes	Observed by:
$Y_s(2175)$	2175 ± 8	58 ± 26	1	$\phi f_0(980)$	$e^{+}e^{-}$ (ISR), $J/\psi \to \eta Y_s(2175)$	BaBar, BESII, Belle
X(3872)	3871.4 ± 0.6	< 2.3	1++	$\pi^+\pi^-J/\psi, \gamma J/\psi, D\bar{D^*}$	$B \to KX(3872), p\bar{p}$	Belle, CDF, D0, BaBar
Z(3930)	3929 ± 5	29 ± 10	2++	$Dar{D}$	$\gamma\gamma \to Z(3940)$	Belle
X(3940)	3942 ± 9	37 ± 17	0?+	$D\bar{D}^*$ (not $D\bar{D}$ or $\omega J/\psi$)	$e^+e^- \to J/\psi X(3940)$	Belle
Y(3940)	3943 ± 17	87 ± 34	??+	$\omega J/\psi \ ({ m not} \ D \bar{D^*})$	$B \to KY(3940)$	Belle, BaBar
Y(4008)	4008^{+82}_{-49}	226_{-80}^{+97}	1	$\pi^+\pi^-J/\psi$	$e^+e^-(ISR)$	Belle
X(4160)	4156 ± 29	139^{+113}_{-65}	0?+	$D^*\bar{D^*}$ (not $D\bar{D}$)	$e^+e^- \to J/\psi X(4160)$	Belle
Y(4260)	4264 ± 12	83 ± 22	1	$\pi^+\pi^-J/\psi$	$e^+e^-(ISR)$	BaBar, CLEO, Belle
Y(4350)	4361 ± 13	74 ± 18	1	$\pi^+\pi^-\psi'$	$e^+e^-(ISR)$	BaBar, Belle
Y(4660)	4664 ± 12	48 ± 15	1	$\pi^+\pi^-\psi'$	$e^+e^-(ISR)$	Belle
$Z_1(4050)$	4051_{-23}^{+24}	82^{+51}_{-29}	?	$\pi^{\pm}\chi_{c1}$	$B \to KZ_1^{\pm}(4050)$	Belle
$Z_2(4250)$	4248_{-45}^{+185}	177^{+320}_{-72}	?	$\pi^{\pm}\chi_{c1}$	$B \to KZ_2^{\pm}(4250)$	Belle
Z(4430)	4433 ± 5	45^{+35}_{-18}	?	$\pi^{\pm}\psi'$	$B \to KZ^{\pm}(4430)$	Belle
$Y_b(10890)$	$10,890\pm3$	55 ± 9	1	$\pi^+\pi^-\Upsilon(1,2,3S)$	$e^+e^- o Y_b$	Belle

Final states with c and c, but do not fit expectations for unfilled cc levels.

 $\mathcal{E}xotic?$ tetraquark $|cqcq\rangle$, molecule DD, hybrid $|ccg\rangle$.

Manifestly exotic: $Z(4430)^+ \rightarrow \pi^+ \psi'$ and $Z_1(4050), Z_2(4250) \rightarrow \pi^+ \chi_{c1} \Leftrightarrow |cu\underline{cd}\rangle$.

Observation of $Z(4430)^+ \rightarrow \pi^+ \psi'$

Belle, PRL100,142001

Observation of $Z(4430)^+ \rightarrow \pi^+ \psi'$

 $\mathcal{B}(\bar{B}^0 \to K^- Z(4430)^+) \times \mathcal{B}(Z(4430)^+ \to \pi^+ \psi')$ $= (4.1 \pm 1.0 \pm 1.4) \times 10^{-5}$

Significance 6.5σ.

Interference of L=0,1,2 waves in $K\pi^+$ system can not produce such a narrow structure.

Search for Z(4430)⁺ by BaBar

BaBar, 0811.0564 submitted to PRD

"No significant Z(4430)* signal"

 $Z(4430)^+$ significance 1.9 σ M, Γ are floating

3.1 σ M, Γ are fixed to Belle measurement

"More complicated background shape than assumed by Belle."

 \Leftrightarrow Motivation for B \to K $\pi^+\,\psi^\prime$ Dalitz analysis.

Formalism of B \rightarrow K $\pi^+ \psi'$ Dalitz analysis

First presented at QWG08.

Integrate over ψ' decay angles

- interference between different ψ' helicity states vanish
- \Leftrightarrow consider ψ' as stable

Amplitude = sum over quasi two-body contributions

Breit-Wigner × angular dependence

Consider intermediate resonances

$$\kappa$$
, K*(892), K*(1410), K₀(1430), K₂(1430), K*(1680), Z(4430)⁺ $\rightarrow \pi$ ⁺ ψ ′

Fit function is corrected for efficiency and background.

605fb⁻¹

Use the same data sample as in Z(4430)⁺ observation paper.

Results of B \rightarrow K $\pi^+ \psi'$ Dalitz plot fit

Results of B \rightarrow K $\pi^+ \psi'$ Dalitz plot fit

Results of B \rightarrow K $\pi^+ \psi'$ Dalitz plot fit

Previous measurement

$$M = (4433 \pm 4 \pm 2) \,\text{MeV}/c^2$$

 $\Gamma = (45^{+18}_{-13}) \,\text{MeV}$

Dalitz analysis results

$$M = (4443^{+15+17}_{-12-13}) \,\text{MeV}/c^2$$
$$\Gamma = (109^{+86+57}_{-43-52}) \,\text{MeV}$$

$$\mathcal{B}(\bar{B}^0 \to K^- Z(4430)^+) \times \mathcal{B}(Z(4430)^+ \to \pi^+ \psi')$$

$$= (4.1 \pm 1.0 \pm 1.4) \times 10^{-5}$$

$$= (3.2^{+1.8}_{-0.9} + 5.3)_{-1.6} \times 10^{-5}$$

Significance 6.5σ

Significance 6.4σ

Dalitz analysis results agree with previous Belle measurement.

Systematics of B \rightarrow K π^+ ψ' Dalitz plot fit

Model	Significance
default	6.4σ
no $K_0^*(1430)$	6.6σ
no $K^*(1680)$	6.6σ
release constraints on κ mass & width	6.3σ
$new K^* (J=1)$	6.0σ
$new K^* (J=2)$	5.5σ
add non-resonant $\psi'K^-$ term	6.3σ
add non-resonant $\psi'K^-$ term, release constraints on κ mass & width	5.8σ
add non-resonant $\psi'K^-$ term, new K^* $(J=1)$	5.5σ
add non-resonant $\psi'K^-$ term, new K^* $(J=2)$	5.4σ
add non-resonant $\psi' K^-$ term, no $K^*(1410)$	6.3σ
add non-resonant $\psi'K^-$ term, no $K^*(1680)$	6.6σ
LASS parameterization of S-wave component	6.5σ

 $Z(4430)^+$ significance exceeds 5.4 σ for all fit models.

Assume $J_{Z(4430)}=0$. No fit improvement for $J_{Z(4430)}=1$.

Branching fractions

$$\mathcal{B}(\bar{B}^0\to K^-\pi^+\psi')=(5.68\pm0.13\pm0.42)\times 10^{-4}$$

$$(5.57\pm0.16)\times 10^{-4}$$
 BaBar, 0811.0564 (stat.)

$$\mathcal{B}(B^0 \to K^*(892)^0 \psi') = (5.52^{+0.35}_{-0.32} + 0.53_{0.58}) \times 10^{-4}$$

$$(7.2 \pm 0.8) \times 10^{-4} \text{ PDG}$$

Fraction of K*(892) which are longitudinally polarized

$$f_L = (44.8^{+4.0}_{-2.7} {}^{+4.0}_{-5.3})\%$$
 $0.45 \pm 0.11 \pm 0.04$ CLEO, PRD63,031103

These are the first measurements based on Dalitz analysis.

Comparison with BaBar

BaBar paper: Belle and BaBar data are statistically consistent.

 \Leftrightarrow peak in M($\pi^+\psi'$) is present also in BaBar data with similar to Belle shape:

Comparison with BaBar

BaBar paper: Belle and BaBar data are statistically consistent.

 \Leftrightarrow peak in M($\pi^+\psi'$) is present also in BaBar data with similar to Belle shape:

Result of Dalitz fit scaled down by 1.18 to account for smaller statistics @ BaBar.

Why different significances are reported? (6.4σ Belle vs. 1.9–3.1σ BaBar) ⇒ assumption about background is crucial.

BaBar method is a simplification of amplitude analysis with a lot of (unphysical?) freedom in description of background.

Dalitz analysis is preferable.

Dalitz plot analysis of $B^0 \rightarrow K^- \pi^+ \chi_{c1}$

Belle, PRD78,072004

Dalitz plot analysis of B⁰ \rightarrow K⁻ π ⁺ χ _{c1}

Belle, PRD78,072004

Same approach as for $B^0 \to K^{\mbox{\tiny -}} \, \pi^+ \, \psi'$

Integrate over χ_{c1} decay angles

Consider intermediate

$$\kappa$$
, $K^*(892)$, $K^*(1410)$, $K_0(1430)$, $K_2(1430)$, $K^*(1680)$, $K^*_3(1780)$, $Z^+ \to \pi^+ \chi_{c1}$

Fit model: all low-lying K* + two ($\pi^+ \chi_{c1}$) resonances

Fit model: all low-lying K* + two ($\pi^+ \chi_{c1}$) resonances

$$M_{1} = (4051 \pm 14^{+20}_{-41}) \,\text{MeV}/c^{2},$$

$$\Gamma_{1} = (82^{+21}_{-17}{}^{+47}_{-22}) \,\text{MeV},$$

$$M_{2} = (4248^{+44}_{-29}{}^{+180}_{-35}) \,\text{MeV}/c^{2},$$

$$\Gamma_{2} = (177^{+54}_{-39}{}^{+316}_{-61}) \,\text{MeV},$$

$$\mathcal{B}(\bar{B^0} \to K^- Z_1^+) \times \mathcal{B}(Z_1^+ \to \pi^+ \chi_{c1}) =$$

$$(3.0^{+1.5}_{-0.8}^{+3.7}) \times 10^{-5},$$

$$\mathcal{B}(\bar{B^0} \to K^- Z_2^+) \times \mathcal{B}(Z_2^+ \to \pi^+ \chi_{c1}) =$$

$$(4.0^{+2.3}_{-0.9}^{+19.7}) \times 10^{-5}.$$

 \Leftrightarrow Z₁(4050)⁺ and Z₂(4250)⁺

Systematics of $B^0 \to K^- \pi^+ \chi_{c1}$ Dalitz plot fit

Model	Significance	One Z^+ vs.	Significance
	of one \mathbb{Z}^+	two Z^+	of two Z^+
default	10.7σ	5.7σ	13.2σ
no κ	15.6σ	5.0σ	16.6σ
no $K^*(1410)$	13.4σ	5.4σ	14.8σ
no $K_0^*(1430)$	10.4σ	5.2σ	14.4σ
no $K^*(1680)$	13.3σ	5.6σ	14.8σ
no $K_3^*(1780)$	12.9σ	5.6σ	14.4σ
add non-resonant $\chi_{c1}K^-$ term	9.0σ	5.3σ	10.3σ
add non-resonant $\chi_{c1}K^-$ term, no $K^*(1410)$	11.3σ	5.1σ	13.5σ
add non-resonant $\chi_{c1}K^-$ term, no $K^*(1680)$	11.4σ	5.3σ	13.7σ
add non-resonant $\chi_{c1}K^-$ term, no $K_3^*(1780)$	10.8σ	5.4σ	13.2σ
add non-resonant $\chi_{c1}K^-$ term, release constraints on κ mass & width	9.5σ	5.3σ	10.7σ
add non-resonant $\chi_{c1}K^-$ term, new K^* $(J=1)$	7.7σ	5.4σ	9.2σ
add non-resonant $\chi_{c1}K^-$ term, new K^* $(J=2)$	6.2σ	5.6σ	8.1σ
LASS parameterization of S-wave component	$\overline{12.4\sigma}$	5.3σ	$\overline{13.8\sigma}$

Significance of $Z_1(4050)^+$ and $Z_2(4250)^+$ is high.

Assume $J_{Z1}=0$, $J_{Z2}=0$. No fit improvement for $J_{Z1}=1$ / $J_{Z2}=1$.

Conclusions

From Dalitz plot analysis of B \to K π^+ ψ' we find signal of Z(4430)⁺ \to π^+ ψ'

$$M = (4443^{+15}_{-12}^{+17}) \text{ MeV}/c^{2}$$

$$\Gamma = (109^{+86}_{-43}^{+57}) \text{ MeV}$$

$$\mathcal{B}(\bar{B}^{0} \to K^{-}Z(4430)^{+}) \times \mathcal{B}(Z(4430)^{+} \to \pi^{+}\psi')$$

$$= (3.2^{+1.8}_{-0.9}^{+5.3}) \times 10^{-5}$$

Significance 6.4σ

These results agree with and supersede our previous measurement.

Belle and BaBar data are consistent, Z(4430)⁺ peak is present in both.

Peak significance crucially depends on assumed background shape.

Belle – full Dalitz analysis

BaBar – simplified approach, freedom in background description "Z(4430)* is ruled out by BaBar."

From Dalitz plot analysis of B \rightarrow K π^+ χ_{c1} we observe two new states $Z_1(4050), Z_2(4250) \rightarrow \pi^+ \chi_{c1}$

Back-up

Other fits of B \rightarrow K $\pi^+ \psi'$ Dalitz plot

default model + $K_3^*(1780)$ K* veto

Significance of Z(4430)⁺ 6.4 $\sigma \rightarrow$ 4.7 σ if K*₃(1780) is included in default model.

We measure $\mathcal{B}(B \to K_3^*(1780)\psi') \simeq 0.5 \times \mathcal{B}(B \to K^*(982)\psi')$

 $K^*_3(1780)$ is • 180MeV $(1.2\Gamma_{K_3^*(1780)})$ above kinematic limit

suppressed by centrifugal barrier with L≥2

BR is anomalously high and would imply non-trivial dynamics in manifestly exotic $K_3^*(1780)\psi'$ channel $\Rightarrow 4.7\sigma$ is underestimate.

Toy MC: large measured $K_{3}^{*}(1780)$ fraction can happen due to stat. fluctuation.

Fit model: all low-lying K* resonances

Fit model: all low-lying K* resonances + non-res. term + new K* (J=2) (best description of data w/o exotic resonances)

Fit model: all low-lying $K^* + (\pi^+ \chi_{c1})$ resonance

