Les Rencontres de Physique de la Vallee d'Aoste 1-7 March 2008, La Thuile, Aosta Valley, Italy # Hot topics at Belle Roman Mizuk (ITEP, Moscow) XYZ mesons Dalitz analyses of B \rightarrow K π^+ ψ' and B \rightarrow K π^+ χ_{c1} #### Charmonium renaissance: XYZ mesons S.L.Olsen, 0901.2371 | state | M (MeV) | Γ (MeV) | J^{PC} | Decay Modes | Production Modes | Observed by: | |--------------|---------------------|--------------------|----------|---|---|-----------------------| | $Y_s(2175)$ | 2175 ± 8 | 58 ± 26 | 1 | $\phi f_0(980)$ | $e^{+}e^{-}$ (ISR), $J/\psi \to \eta Y_s(2175)$ | BaBar, BESII, Belle | | X(3872) | 3871.4 ± 0.6 | < 2.3 | 1++ | $\pi^+\pi^-J/\psi, \gamma J/\psi, D\bar{D^*}$ | $B \to KX(3872), p\bar{p}$ | Belle, CDF, D0, BaBar | | Z(3930) | 3929 ± 5 | 29 ± 10 | 2++ | $Dar{D}$ | $\gamma\gamma \to Z(3940)$ | Belle | | X(3940) | 3942 ± 9 | 37 ± 17 | 0?+ | $D\bar{D}^*$ (not $D\bar{D}$ or $\omega J/\psi$) | $e^+e^- \to J/\psi X(3940)$ | Belle | | Y(3940) | 3943 ± 17 | 87 ± 34 | ??+ | $\omega J/\psi \ ({ m not} \ D \bar{D^*})$ | $B \to KY(3940)$ | Belle, BaBar | | Y(4008) | 4008^{+82}_{-49} | 226_{-80}^{+97} | 1 | $\pi^+\pi^-J/\psi$ | $e^+e^-(ISR)$ | Belle | | X(4160) | 4156 ± 29 | 139^{+113}_{-65} | 0?+ | $D^*\bar{D^*}$ (not $D\bar{D}$) | $e^+e^- \to J/\psi X(4160)$ | Belle | | Y(4260) | 4264 ± 12 | 83 ± 22 | 1 | $\pi^+\pi^-J/\psi$ | $e^+e^-(ISR)$ | BaBar, CLEO, Belle | | Y(4350) | 4361 ± 13 | 74 ± 18 | 1 | $\pi^+\pi^-\psi'$ | $e^+e^-(ISR)$ | BaBar, Belle | | Y(4660) | 4664 ± 12 | 48 ± 15 | 1 | $\pi^+\pi^-\psi'$ | $e^+e^-(ISR)$ | Belle | | $Z_1(4050)$ | 4051_{-23}^{+24} | 82^{+51}_{-29} | ? | $\pi^{\pm}\chi_{c1}$ | $B \to KZ_1^{\pm}(4050)$ | Belle | | $Z_2(4250)$ | 4248_{-45}^{+185} | 177^{+320}_{-72} | ? | $\pi^{\pm}\chi_{c1}$ | $B \to KZ_2^{\pm}(4250)$ | Belle | | Z(4430) | 4433 ± 5 | 45^{+35}_{-18} | ? | $\pi^{\pm}\psi'$ | $B \to KZ^{\pm}(4430)$ | Belle | | $Y_b(10890)$ | $10,890\pm3$ | 55 ± 9 | 1 | $\pi^+\pi^-\Upsilon(1,2,3S)$ | $e^+e^- o Y_b$ | Belle | Final states with c and c, but do not fit expectations for unfilled cc levels. $\mathcal{E}xotic?$ tetraquark $|cqcq\rangle$, molecule DD, hybrid $|ccg\rangle$. Manifestly exotic: $Z(4430)^+ \rightarrow \pi^+ \psi'$ and $Z_1(4050), Z_2(4250) \rightarrow \pi^+ \chi_{c1} \Leftrightarrow |cu\underline{cd}\rangle$. # Observation of $Z(4430)^+ \rightarrow \pi^+ \psi'$ Belle, PRL100,142001 ## Observation of $Z(4430)^+ \rightarrow \pi^+ \psi'$ $\mathcal{B}(\bar{B}^0 \to K^- Z(4430)^+) \times \mathcal{B}(Z(4430)^+ \to \pi^+ \psi')$ $= (4.1 \pm 1.0 \pm 1.4) \times 10^{-5}$ Significance 6.5σ. Interference of L=0,1,2 waves in $K\pi^+$ system can not produce such a narrow structure. #### Search for Z(4430)⁺ by BaBar BaBar, 0811.0564 submitted to PRD "No significant Z(4430)* signal" $Z(4430)^+$ significance 1.9 σ M, Γ are floating 3.1 σ M, Γ are fixed to Belle measurement "More complicated background shape than assumed by Belle." \Leftrightarrow Motivation for B \to K $\pi^+\,\psi^\prime$ Dalitz analysis. #### Formalism of B \rightarrow K $\pi^+ \psi'$ Dalitz analysis First presented at QWG08. #### Integrate over ψ' decay angles - interference between different ψ' helicity states vanish - \Leftrightarrow consider ψ' as stable Amplitude = sum over quasi two-body contributions Breit-Wigner × angular dependence Consider intermediate resonances $$\kappa$$, K*(892), K*(1410), K₀(1430), K₂(1430), K*(1680), Z(4430)⁺ $\rightarrow \pi$ ⁺ ψ ′ Fit function is corrected for efficiency and background. 605fb⁻¹ Use the same data sample as in Z(4430)⁺ observation paper. ## Results of B \rightarrow K $\pi^+ \psi'$ Dalitz plot fit #### Results of B \rightarrow K $\pi^+ \psi'$ Dalitz plot fit #### Results of B \rightarrow K $\pi^+ \psi'$ Dalitz plot fit #### Previous measurement $$M = (4433 \pm 4 \pm 2) \,\text{MeV}/c^2$$ $\Gamma = (45^{+18}_{-13}) \,\text{MeV}$ #### Dalitz analysis results $$M = (4443^{+15+17}_{-12-13}) \,\text{MeV}/c^2$$ $$\Gamma = (109^{+86+57}_{-43-52}) \,\text{MeV}$$ $$\mathcal{B}(\bar{B}^0 \to K^- Z(4430)^+) \times \mathcal{B}(Z(4430)^+ \to \pi^+ \psi')$$ $$= (4.1 \pm 1.0 \pm 1.4) \times 10^{-5}$$ $$= (3.2^{+1.8}_{-0.9} + 5.3)_{-1.6} \times 10^{-5}$$ Significance 6.5σ Significance 6.4σ Dalitz analysis results agree with previous Belle measurement. ## Systematics of B \rightarrow K π^+ ψ' Dalitz plot fit | Model | Significance | |--|--------------| | default | 6.4σ | | no $K_0^*(1430)$ | 6.6σ | | no $K^*(1680)$ | 6.6σ | | release constraints on κ mass & width | 6.3σ | | $new K^* (J=1)$ | 6.0σ | | $new K^* (J=2)$ | 5.5σ | | add non-resonant $\psi'K^-$ term | 6.3σ | | add non-resonant $\psi'K^-$ term, release constraints on κ mass & width | 5.8σ | | add non-resonant $\psi'K^-$ term, new K^* $(J=1)$ | 5.5σ | | add non-resonant $\psi'K^-$ term, new K^* $(J=2)$ | 5.4σ | | add non-resonant $\psi' K^-$ term, no $K^*(1410)$ | 6.3σ | | add non-resonant $\psi'K^-$ term, no $K^*(1680)$ | 6.6σ | | LASS parameterization of S-wave component | 6.5σ | $Z(4430)^+$ significance exceeds 5.4 σ for all fit models. Assume $J_{Z(4430)}=0$. No fit improvement for $J_{Z(4430)}=1$. #### **Branching fractions** $$\mathcal{B}(\bar{B}^0\to K^-\pi^+\psi')=(5.68\pm0.13\pm0.42)\times 10^{-4}$$ $$(5.57\pm0.16)\times 10^{-4}$$ BaBar, 0811.0564 (stat.) $$\mathcal{B}(B^0 \to K^*(892)^0 \psi') = (5.52^{+0.35}_{-0.32} + 0.53_{0.58}) \times 10^{-4}$$ $$(7.2 \pm 0.8) \times 10^{-4} \text{ PDG}$$ Fraction of K*(892) which are longitudinally polarized $$f_L = (44.8^{+4.0}_{-2.7} {}^{+4.0}_{-5.3})\%$$ $0.45 \pm 0.11 \pm 0.04$ CLEO, PRD63,031103 These are the first measurements based on Dalitz analysis. ## Comparison with BaBar BaBar paper: Belle and BaBar data are statistically consistent. \Leftrightarrow peak in M($\pi^+\psi'$) is present also in BaBar data with similar to Belle shape: #### Comparison with BaBar BaBar paper: Belle and BaBar data are statistically consistent. \Leftrightarrow peak in M($\pi^+\psi'$) is present also in BaBar data with similar to Belle shape: Result of Dalitz fit scaled down by 1.18 to account for smaller statistics @ BaBar. Why different significances are reported? (6.4σ Belle vs. 1.9–3.1σ BaBar) ⇒ assumption about background is crucial. BaBar method is a simplification of amplitude analysis with a lot of (unphysical?) freedom in description of background. Dalitz analysis is preferable. # Dalitz plot analysis of $B^0 \rightarrow K^- \pi^+ \chi_{c1}$ Belle, PRD78,072004 ## Dalitz plot analysis of B⁰ \rightarrow K⁻ π ⁺ χ _{c1} Belle, PRD78,072004 Same approach as for $B^0 \to K^{\mbox{\tiny -}} \, \pi^+ \, \psi'$ Integrate over χ_{c1} decay angles Consider intermediate $$\kappa$$, $K^*(892)$, $K^*(1410)$, $K_0(1430)$, $K_2(1430)$, $K^*(1680)$, $K^*_3(1780)$, $Z^+ \to \pi^+ \chi_{c1}$ Fit model: all low-lying K* + two ($\pi^+ \chi_{c1}$) resonances Fit model: all low-lying K* + two ($\pi^+ \chi_{c1}$) resonances $$M_{1} = (4051 \pm 14^{+20}_{-41}) \,\text{MeV}/c^{2},$$ $$\Gamma_{1} = (82^{+21}_{-17}{}^{+47}_{-22}) \,\text{MeV},$$ $$M_{2} = (4248^{+44}_{-29}{}^{+180}_{-35}) \,\text{MeV}/c^{2},$$ $$\Gamma_{2} = (177^{+54}_{-39}{}^{+316}_{-61}) \,\text{MeV},$$ $$\mathcal{B}(\bar{B^0} \to K^- Z_1^+) \times \mathcal{B}(Z_1^+ \to \pi^+ \chi_{c1}) =$$ $$(3.0^{+1.5}_{-0.8}^{+3.7}) \times 10^{-5},$$ $$\mathcal{B}(\bar{B^0} \to K^- Z_2^+) \times \mathcal{B}(Z_2^+ \to \pi^+ \chi_{c1}) =$$ $$(4.0^{+2.3}_{-0.9}^{+19.7}) \times 10^{-5}.$$ \Leftrightarrow Z₁(4050)⁺ and Z₂(4250)⁺ ## Systematics of $B^0 \to K^- \pi^+ \chi_{c1}$ Dalitz plot fit | Model | Significance | One Z^+ vs. | Significance | |--|-------------------------|---------------|-------------------------| | | of one \mathbb{Z}^+ | two Z^+ | of two Z^+ | | default | 10.7σ | 5.7σ | 13.2σ | | no κ | 15.6σ | 5.0σ | 16.6σ | | no $K^*(1410)$ | 13.4σ | 5.4σ | 14.8σ | | no $K_0^*(1430)$ | 10.4σ | 5.2σ | 14.4σ | | no $K^*(1680)$ | 13.3σ | 5.6σ | 14.8σ | | no $K_3^*(1780)$ | 12.9σ | 5.6σ | 14.4σ | | add non-resonant $\chi_{c1}K^-$ term | 9.0σ | 5.3σ | 10.3σ | | add non-resonant $\chi_{c1}K^-$ term, no $K^*(1410)$ | 11.3σ | 5.1σ | 13.5σ | | add non-resonant $\chi_{c1}K^-$ term, no $K^*(1680)$ | 11.4σ | 5.3σ | 13.7σ | | add non-resonant $\chi_{c1}K^-$ term, no $K_3^*(1780)$ | 10.8σ | 5.4σ | 13.2σ | | add non-resonant $\chi_{c1}K^-$ term, release constraints on κ mass & width | 9.5σ | 5.3σ | 10.7σ | | add non-resonant $\chi_{c1}K^-$ term, new K^* $(J=1)$ | 7.7σ | 5.4σ | 9.2σ | | add non-resonant $\chi_{c1}K^-$ term, new K^* $(J=2)$ | 6.2σ | 5.6σ | 8.1σ | | LASS parameterization of S-wave component | $\overline{12.4\sigma}$ | 5.3σ | $\overline{13.8\sigma}$ | Significance of $Z_1(4050)^+$ and $Z_2(4250)^+$ is high. Assume $J_{Z1}=0$, $J_{Z2}=0$. No fit improvement for $J_{Z1}=1$ / $J_{Z2}=1$. #### Conclusions From Dalitz plot analysis of B \to K π^+ ψ' we find signal of Z(4430)⁺ \to π^+ ψ' $$M = (4443^{+15}_{-12}^{+17}) \text{ MeV}/c^{2}$$ $$\Gamma = (109^{+86}_{-43}^{+57}) \text{ MeV}$$ $$\mathcal{B}(\bar{B}^{0} \to K^{-}Z(4430)^{+}) \times \mathcal{B}(Z(4430)^{+} \to \pi^{+}\psi')$$ $$= (3.2^{+1.8}_{-0.9}^{+5.3}) \times 10^{-5}$$ Significance 6.4σ These results agree with and supersede our previous measurement. Belle and BaBar data are consistent, Z(4430)⁺ peak is present in both. Peak significance crucially depends on assumed background shape. Belle – full Dalitz analysis BaBar – simplified approach, freedom in background description "Z(4430)* is ruled out by BaBar." From Dalitz plot analysis of B \rightarrow K π^+ χ_{c1} we observe two new states $Z_1(4050), Z_2(4250) \rightarrow \pi^+ \chi_{c1}$ # Back-up ## Other fits of B \rightarrow K $\pi^+ \psi'$ Dalitz plot #### default model + $K_3^*(1780)$ K* veto Significance of Z(4430)⁺ 6.4 $\sigma \rightarrow$ 4.7 σ if K*₃(1780) is included in default model. We measure $\mathcal{B}(B \to K_3^*(1780)\psi') \simeq 0.5 \times \mathcal{B}(B \to K^*(982)\psi')$ $K^*_3(1780)$ is • 180MeV $(1.2\Gamma_{K_3^*(1780)})$ above kinematic limit suppressed by centrifugal barrier with L≥2 BR is anomalously high and would imply non-trivial dynamics in manifestly exotic $K_3^*(1780)\psi'$ channel $\Rightarrow 4.7\sigma$ is underestimate. Toy MC: large measured $K_{3}^{*}(1780)$ fraction can happen due to stat. fluctuation. #### Fit model: all low-lying K* resonances Fit model: all low-lying K* resonances + non-res. term + new K* (J=2) (best description of data w/o exotic resonances) Fit model: all low-lying $K^* + (\pi^+ \chi_{c1})$ resonance