EDIT 2015

Excellence in Detectors and Instrumentation Technologies Frascati, Oct. 26, 2015

Silicon Detectors

Norbert Wermes University of Bonn, Germany

N. Wermes, EDIT 2015

Outline

Lecture 1

Introduction and Motivation

- Break-throughs in particle detection
- Vertex measurement

Fundamentals of Semiconductor Detectors

- The signal and the noise
- Spatial resolution with structured electrodes

Lecture 2

Semiconductor Detectors

- Microstrip Detectors
- Silicon Drift Chambers
- Hybrid Pixel Detectors
- Monolithic Pixel Detectors

Content Lecture 1

□ Tasks of semiconductor tracking detectors

Fundamentals of semicond. detectors

- pn and other junctions
- single and double sided detectors
- signal and noise
- (δ electrons)
- Shockley-Ramo theorem
- Lorentz angle
- Spatial Resolution
- Other semiconductor materials

Break through advances in experimentation

Wire chambers

- → electronic recording of particle tracks
- \rightarrow electronic recording of tracks
- $\rightarrow \sigma = mm \rightarrow 50 \mu m$, 0.05 channels / cm²

Silicon strip detectors

 → measurement of ps – lifetimes and heavy quark "tagging"
 → σ < 5 μm, 50 channels / cm²

Pixel detectors

- → 3-dim point measurement in high rate environments like LHC
- \rightarrow σ ~ 10 μ m -> 2 μ m,
- \rightarrow 10 000 channels / cm²

Looking back at 3 years of LHC (25 /fb) ...

Tracking in pp collisions at 13 TeV (LHC)

~1200 tracks every 25 ns or ~ 10^{11} per second \Rightarrow high radiation dose 10¹⁵ n_{eq} / cm² / 10 yrs @ LHC or 600 kGy (60 Mrad) through ionisation of particles

DEMANDS

position of tracking detector (pixels, strips, straw tubes)

LHC $\approx 10^6 \text{ x LEP in track rate }$!

Note: LHC Upgrade (2026): HL–LHC = LHC x 10 !

A spectrometer -> momentum measurement in B-field universitätbonn

Example: Tracking in LHCb (Dipole)

N. Wermes, EDIT 2015

Extrapolation to the (primary) vertex

Tasks of semiconductor strip and pixel detectors

- 1. Pattern Recognition and Tracking
 - precision tracking points in 3D \rightarrow track seeding
 - 1 pixel layer $\leftarrow \rightarrow$ 3-4 strip layers (x,y & u,v for ambiguities)
- 2. Vertexing (primary and secondary vertex) ¹⁾
 - impact parameter resolution
 - secondary vertex resolution
 - primary vertex resolution
 - (life) time resolution

~10μm (rφ), ~70μm (z) ~50μm (rφ), ~70μm (z) ~11μm (rφ), ~45μm (z) ~70 fs

3. Momentum measurement ¹⁾

 $\frac{\sigma_{p_{T}}}{p_{T}} = 0.03\% \ p_{T}(GeV) \oplus 1.2\%$ (inner detector)

¹⁾values for ATLAS

Impact parameter resolution (simplified)

Impact parameter resolution (simplified)

Fundamentals of Semiconductor Detectors

(with emphasis on particle detectors for tracking)

Gas-filled versus Semiconductor Detectors

3.65 eV (Si) needed per e/h pair
~10⁶ e/h pairs per cm (20 000/250μm) no intrinsic amplification
typ. noise: 100 e- to 1000 e- (ENC)

26 eV needed (Ar) per e/ion pair94 e/ion pairs per cm

intrinsic amplification typ. 10⁵ typ. noise: > 3000 e- (ENC)

cf. lecture by Fabio Sauli

Semiconductors suited for detectors

Semiconductor	band gap	intrinsic	average	W_{eh}	mobility		carrier
	(eV)	carrier conc.	\mathbf{Z}	(eV)	$\mathrm{cm}^2/\mathrm{Vs}$		life time
		(cm^{-3})			е	\mathbf{h}	
Si	1.12	$1.45 \cdot 10^{10}$	14	3.61	1450	505	$100 \mu s$
Ge	0.66	$2.4 \cdot 10^{13}$	32	2.96	3900	1800	
GaAs	1.42	$1.8 \cdot 10^6$	32	4.35	8800	320	110 ns
CdTe	1.44	10^{7}	50	4.43	1050	100	0.1-2 μs
CdZnTe	~ 1.6		49.1	4.6	$\sim \! 1000$	50 - 80	$\sim \mu { m s}$
CdS	2.42		48 + 16	6.3	340	50	
HgI_2	2.13		62	4.2	100	4	$\sim \mu { m s}$
InAs	0.36		49 + 33		33000	460	
InP	1.35		49 + 15		4600	150	
ZnS	3.68		30 + 16	8.23	165	5	
PbS	0.41		82 + 16		6000	4000	
Diamond	5.48	$< 10^{3}$	6	13.1	1800	1400	${\sim}1~{\rm ns}$

photon absorption by photo effect ~Z⁽⁴⁻⁵⁾

The pn junction as a semiconductor particle detector

The pn junction as a semiconductor particle detector

N. Werm depletion zone grows from the junction into the lower doped bulk

area diode w/ guard ring

pn area diode

Detector shapes

N. Wermes, EDIT-2015

Detector shapes

pn area diode

AC - Coupling

Detector shapes

an ionizing particle (or an X-ray photon) creates e/h pairs

in Si bulk fully depleted

- w_i = 3.65 eV per e/h
- <u>a high energy particle</u>
 - \rightarrow ~ 80 e/h per μ m
- all charge collected
- ~ 20 000 e/h per 250 μm = 3 fC
- <u>radiation</u>

e.g. 10 keV X-ray: 3000 e/h ≈ 0.5 fC

- strip or pixel pattern
- \bullet typical strip pitch: 50 100 μm
- typical pixel cells: 100 x 150 μm^2 50 x 400 μm^2
- charge drift in E-field
- charge diffusion σ ~8-10 μm
 charge spreads over 2-3 pixels/strips

Charge distribution and delta electrons

N. Wermes, EDIT-2015

Delta electrons

effect of δ -electrons

100 keV δ -electron occurs in 300 μm Si with 6% probability and has a "range" of 60 μm

δ -electron with perpendicular emission

DEPFET pixels (25 μ m x 25 μ m)

How the signal develops

by "electrostatic induction" (influenza elettrica, influence electrique, elektrische Influenz)

Signal generation in an electrode configuration

how does a moving charge couple to an electrode ?

• respect Gauss' law and find

Shockley- Ramo theorem (Shockley J Appl.Phys 1938, Ramo 1939)

weighting field

determines how charge movement couples to a specific electrode

$$i_S = -\frac{dQ}{dt} = q \, \vec{E}_w \, \vec{v}$$

$$dQ = q\vec{\nabla} \Phi_W d\vec{r}$$

induction (weighting) potential

determines how charge movement couples to a specific electrode

Ramo Theorem in a many electrode configuration

Recipe: To compute the weighting field of a readout electrode i, set voltage of electrode i to 1 and all other electrodes to 0.

Normal Field and Weighting Field

A detector is a current source

delivers a current pulse independent of the load

one can convert current into charge (integral) or voltage (via R or C)

A parallel plate detector (capacitor)

N. Wermes, BND-School-2015

Signal in a Silicon detector (= parallel plate w/ space charge)

- E-field not constant
- velocity not constant
- weighting field still the same

$$\vec{E}_w = -\frac{1}{d}\vec{e}_x$$

$$\begin{split} E(x) &= -\left[\frac{2U_{dep}}{d^2}(d-x) + \frac{U-U_{dep}}{d}\right] = -\left[\frac{U+U_{dep}}{d} - \frac{2U_{dep}}{d^2}x\right] = -(a-bx) \\ v_e &= -\mu_e E(x) = +\mu_e (a-bx) = \dot{x}_e \\ v_h &= +\mu_h E(x) = -\mu_h (a-bx) = \dot{x}_h \\ \hline i_S(t) &= i_S^e(t) + i_S^h(t) \\ &= -\frac{e}{d} \left(\frac{2U_{dep}}{d^2} x_0 - \frac{U+U_{dep}}{d}\right) \\ &\times \left\{\mu_e \exp\left(-2\mu_e \frac{U_{dep}}{d^2}t\right) \Theta(T^- - t) - \mu_h \exp\left(+2\mu_h \frac{U_{dep}}{d^2}t\right) \Theta(T^+ - t)\right\} \end{split}$$

N. Wermes, BND-School-2015

Kolanoski, Wermes 2015

transient current

Current pulse measurements: TCT technique

Note

- movement of both charges create signals on both electrodes.
- on every electrode a total charge of

$$Q_S^{tot} = Q_S^- + Q_S^+ = -Ne$$

is induced.

 if a material the produced charges have very different mobilities (like CdTe) e.g. with μ_h≈ 0, then part of the signal is lost and the signal becomes dependent on where the charge was deposited.

Signal development in a wire configuration

- we follow our Shockley-Ramo-recipe: find weighting field E_w or the weighting potential Φ_w by setting

$$\phi_w(a) = 1, \ \phi_w(b) = 0$$
 (*)

- we know already the shape of $\Phi_{\rm W}$ ~ ln r, since E(r) ~ 1/r
- hence

$$\vec{E}_w(r) = \frac{1}{r} \frac{1}{\ln b/a} \frac{\vec{r}}{r} \,, \qquad \phi_w(r) = -\frac{\ln r/b}{\ln b/a} \,\, \label{eq:while}$$

which fulfils (*)

Signal generation in a pixellated detector (1-dim)

Concluding ... **consequences** ...

39

- \Box The weighting field reaches also into regions of neighbor pixels \rightarrow induced signals there as well
- □ At the beginning of the charge movement, neighbor pixels "see" almost as much signal as the "hit" pixel → no difference when electronics is (too) fast
- □ consequences for small electrodes is, that most of the charge is induced, when q is <u>near</u> the hit pixel → small pixel effect
- □ when charges drift only a short distance due to
 - $\mu_h \ll \mu_e$ (e.g. for CdTe)
 - trapping (e.g. for pCVD diamond)

peculiar signal patterns may arise (worst case: holes do not move and electrons are trapped after 50 μ m \rightarrow several pixels "fire")

Transport of charges to the R/O electrode

generally described by the Boltzmann Transport Equation

$$\frac{df}{dt} = \frac{\partial f}{\partial t} + \frac{d\vec{r}}{dt} \vec{\nabla}_{\vec{r}} f + \frac{d\vec{v}}{dt} \vec{\nabla}_{\vec{v}} f = \frac{\partial f}{\partial t}_{|coll}$$

with f(r, v, t) describing the probability distribution in phase space

$$dp(\vec{r},\vec{v},t) = f(\vec{r},\vec{v},t) d^3 \vec{r} d^3 \vec{v}$$

Which can treat arbitrary E and B-fields ...

$$\begin{split} v_{D,1}^{B} &= -\frac{4\pi}{3} \frac{qE}{m} \int_{0}^{\infty} \tau \frac{\omega_{2}\tau}{1+\omega^{2}\tau^{2}} \left(\frac{2\epsilon}{m}\right)^{3/2} \frac{\partial f_{0}}{\partial \epsilon} d\epsilon = \frac{qE}{m} \left\langle \tau \frac{\omega_{2}\tau}{1+\omega^{2}\tau^{2}} \right\rangle_{\epsilon} \quad \text{with} \\ v_{D,2}^{B} &= -\frac{4\pi}{3} \frac{qE}{m} \int_{0}^{\infty} \tau \frac{\omega_{2}\omega_{3}\tau^{2}}{1+\omega^{2}\tau^{2}} \left(\frac{2\epsilon}{m}\right)^{3/2} \frac{\partial f_{0}}{\partial \epsilon} d\epsilon = \frac{qE}{m} \left\langle \tau \frac{\omega_{2}\omega_{3}\tau^{2}}{1+\omega^{2}\tau^{2}} \right\rangle_{\epsilon} \quad \omega_{i} = qB_{i}/m = \text{cyclotron} \\ requencies \\ v_{D,3}^{B} &= -\frac{4\pi}{3} \frac{qE}{m} \int_{0}^{\infty} \tau \frac{1+\omega_{3}^{2}\tau^{2}}{1+\omega^{2}\tau^{2}} \left(\frac{2\epsilon}{m}\right)^{3/2} \frac{\partial f_{0}}{\partial \epsilon} d\epsilon = \frac{qE}{m} \left\langle \tau \frac{1+\omega_{3}^{2}\tau^{2}}{1+\omega^{2}\tau^{2}} \right\rangle_{\epsilon} \quad \tau = \text{mean collision time} \\ \varepsilon = \text{kin. energy} \\ \text{In detectors: usually either} \quad \vec{E} \perp \vec{B} \quad \text{or} \quad \vec{E} \parallel \vec{B} \end{split}$$

Diffusion and drift of charge cloud on way to electrode

universität**bonn**

Movement in the presence of a magnetic field

- if the electric field E is perpendicular to a magnetic field B then the charges drift on circle segments until they stop in a collision
- on average this results in a deflection of the drift path by an angle called

Lorentz angle

with

 $\omega = qB/m = cyclotron frequency$

 τ = mean collision time

Signal generation in a magnetic field

Spatial Resolution in segmented electrode configuration Sniversitätbonn

binary R/O

- binary readout (hit/no hit)
- analog readout (pulse height information)
- signal (charge) distributed on more than one electrode

$$v = \int_{x_1}^{x_2} x^2 f(x) dx$$
$$\sigma_x^2 = \frac{1}{a} \int_{-a/2}^{a/2} \Delta_x^2 d(\Delta_x) = \frac{a^2}{12}$$

Spatial Resolution in segmented electrode configuration Sniversitätbonn

Observations

typical for semiconductor detectors and patterned gaseous detectors

 $S_L(x) = Q \eta(x)$

$$S_R(x) = Q - S_L(x) = Q(1 - \eta(x))$$

η = response function, indep. of Qcan be determined from signals themselves

$$\eta = \frac{S_L}{S_L + S_R}$$

- assume a constant hit probability density
- => can build inverse of η -function (η -> x)
- pick best estimate of position from measured distribution
- algorithm can also be extended to three electrode situations

$$x_{rec} = \eta^{-1} \left(\frac{S_L}{S_L + S_R} \right) = \frac{a}{N} \int_0^{\eta} \frac{dN}{d\eta'} d\eta'$$

 $N_{electrodes} = 2-3$, S/N ~ 10

N. Wermes, BND-School-2015

Arbitrary detector response

🖵 Ge

- similar to Si (but larger Z = 32)
- smaller bandgap (Ge: 0.7 eV; Si: 1.12 eV),
 - => smaller w_i needed per e/h-pair (2.96 vs 3.65 eV) => larger signal

(b)

Metall

=> but also: more thermally generated leakage current => needs cooling

GaAs

- Z = 32
- Iarger bandgap than Si (radhard??)
- dangerous EL2 defect (Ga on As place which causes low field region

Kolanoski, Wermes 2015

GaAs

What is different in other semiconductors?

N. Wermes, EDIT 2015

What is different in other semiconductors?

CVD – Diamond

- actually an insulator (bad gap = 5.3 eV, w_i= 13.2 eV)
 - => small signal
 - => zero leakage current (radiation hardness!!)
 - => free of intrinsic charge carriers (diamond is already "depleted") 🕐
- energy need to knock out a crystal atom is 43 eV (Si: 25 eV)
 => radiation hard (••)
- CVD-grown in poly-crystalline (today's standard) and in mono-crystalline samples ^Ctedious
- high carrier mobility (fast)
- CCD ≈ 250µm reached
- nice thermal features !!

poly-crystalline CVD diamond

mono-crystalline CVD diamond