EDIT 2015

Excellence in Detectors and Instrumentation Technologies Frascati, Oct. 26, 2015

Lecture 2 Semiconductor Detectors

Norbert Wermes University of Bonn, Germany

N. Wermes, EDIT_2015

Content Lecture 2

- Semiconductor Trackers
- Microstrip Detectors
- Silicon Drift Detectors
- Hybrid Pixel Detectors
- new sensor types 3D-Si, Diamond
- Radiation Damage
 - sensor damage and curing measures
 - R/O chip damage and cures
- □ (Noise in Semiconductors)
- Monolithic Pixel Detectors
 - DEPFET Pixels
 - MAPS
 - Depleted CMOS Pixels (DMAPS)

if oxide defect (pin holes) => broken channel

Biasing a strip or a pixel detector

• where is the problem?

the problem comes with many channels

$\hfill\square$ resistive poly silicon biasing

- polycrystalline Si on SiO₂
 has area resistance of ~100 kΩ/□
- meander structures can reach
 50 200 kΩ (for space reasons)
- variations
- extra processing step

Punch through biasing

How to bias a pixel detector ... with many many channels? universitätbonn

N. Wermes, EDIT 2015

Double sided detectors

universität**bonn**

• exploit the fact that a signal is induced on both sides of the detector

A double sided strip detector layout

N. Wermes, EDIT 2015

from: G. Lutz, Semiconductor Radiation Detectors

universität**bonn**

Capacitive charge division

a method to obtain better spatial resolution for a given number of channels
 the output signal is divided according to the series capacitances to either side

A typical strip detector module (here ATLAS)

Tracking Detectors: CMS (pp collisions)

Largest Si – Detector ever (~200 m²)

N. Wermes, EDIT_2015

Tracking Detectors LHCb VErtex LOcator

N. Wermes, EDIT_2015

The silicon drift chamber

The principle of sidewards depletion

Gatti, Rehak (1984)

1-dim. **Poisson Equation**

with boundary condition

 $\phi(x = -\frac{d}{2}) = \phi(x = \frac{d}{2}) = U_0(z)$

quadratic potential for electrons

The silicon drift chamber principle

- add a linear potential gradient on top of the parabolic potential
- in anode region "push" electrons to anode electrodes

PROS

- 2-dim high resolution (typ. <50µm) readout w/ only few R/O electrodes
- very good 2-particle separation
 CON
 - drift times typ. ~µs
 - => not useful for high rate exp.
- ^r application: Heavy Ion Experiments

only 360 R/O anodes (every 1°)

Silicon Drift Chamber for Imaging = SD-Diodes

- only one anode in center
- □ small capacitance (10fF) => very low noise (~few e-)
- □ large sensing area

SDCs in ALICE ITS

Hybrid Pixel Detectors

Today's "state of the art" of running pixel detectors

all based on "Hybrid Pixels"

Hybrid Pixel assembly => called "hybridization"

Sensors

- n⁺ in n (oxygenated Si)
- wafer size (Ø 10 cm)
- ~200-250 µm thick

Electronics - Chip

- chip size limited by yield ~1-2.5 cm²
- wafer size (Ø 20 cm)

Hybridization

- PbSn (or In) bumps (processing on wafer scale)
- IC wafers thinned after bumping to ~180 μm
- ,flip-chip' to mate the parts
- ~3000 bumps/chip, ~50000 bumps/module

N. Wermes, EDIT 20: ATLAS Modul, Foto:IZM, Berlin

ATLAS pixel BARE module

IZM,Berlin

Hybrid Pixel Assembly (here ATLAS)

Important: Readout Chips (ASICs)

- becomes integral part of the detector
 - micro electronics
 - up to 700 million transistors so far
 - development takes typ. 10 man years
- ATLAS FE-I3
 - 0,25 μm CMOS technology
 - pixel cell size: 50 x 400 μm²
 - 18 columns x 160 rows = 2880 cells
 - parallel processing in all cells
 - $\,\circ\,$ amplification
 - $\circ\,$ zero suppression

L. Blanquart, P. Fischer et al., NIM-A 456 (2001) 217-231

Functions in the cell (binary readout + "poor man's" analog)

Integration of signal charge by charge sensitive amplifier

- Pulse shaping by feedback circuit with constant current feed back
- Hit detection by comparator
- ~5 bit analog information via "time over threshold"
- storage of address and time stamps in RAM at the periphery

N. Wermes, EDIT_2015

L. Blanquart et al., NIM-A565:178-187, 2006

ATLAS Pixel Frontend Chip

- becomes integral part of the detector
 - micro electronics
 - up to 700 million transistors so far
 - development takes typ. 10 man years
- ATLAS FE-I3
 - 0,25 μm CMOS technology
 - pixel cell size: 50 x 400 μm²
 - 18 columns x 160 rows = 2880 cells
 - parallel processing in all cells
 - \circ amplification
 - zero suppression
- □ End of Column logic
 - storage of hit information during trigger latency (2.5 μs)
 - hit selection upon L1 trigger

L. Blanquart, P. Fischer et al., NIM-A 456 (2001) 217-231

ATLAS Pixel Detector

- light weight "carbon-carbon" structures
- cooling (pumped C_3F_8 : boiling point = -25⁰)
- T < -6^{0} C to limit damage from irradiation

1st Upgrade ... (installed 2014)

IBL = ATLAS' insertable B-Layer

- move closer to IP (5.5 cm -> 3.5 cm)
- higher rate
- higher radiation levels (~1/r²)
 - FE-I4: larger chip smaller feature size higher rate capability

~0.6 × 1.1 cm²

250 nm technology pixel size 400 \times 50 μ m² 3.5 M transistors

130 nm technology pixel size 250 × 50 μm² 87 M transistors installed in ATLAS: May 2014

 $\sim 2 \times 5 \text{ cm}^2$

ATLAS Pixel 16-chip module $\sim 2 \times 4 \text{ cm}^2$

IBL: 2-chip module28

ATLAS IBL in operation

N. Wermes, EDIT_2015

Number of Pixel hits 29

Radiation Damage

distinguish

- non-ionising energy loss (NIEL) by charged particles or neutrons through interactions with the Si-lattice
 adamages mainly the sensor performance (charge collection) measured in terms of "fluence" = particles/cm² = flux × time -> n_{eg}/cm²
- ionising energy loss (IEL) by charged particles (dE/dx) or X-rays (absorption) creates charges, especially in transistor gate oxides
 => damages mainly the chip electronics
 measured in terms of TID = total ionizing dose (in Gy or rad = 100 Gy)
- 10 years LHC $\approx 10^{15} n_{eq}/cm^2$ and 600 kGy (60 Mrad)
- ~10 x more at HL-LHC

Semiconductor detectors in the LHC radiation environment

particle interactions with lattice nuclei

1 MeV neutron damage

recoiling Si-atom can cause further defects → defect <u>clusters</u> (10nm x 200nm)

generation/recombination levels in band gap
 → increase of leakage current

- 2. change of space charge in depleted region
 → change of effective doping concentration
- 3. trapping centers created
 - \rightarrow trapping of signal charge

particle interactions with lattice nuclei

recoiling Si-atom can cause further defects → defect <u>clusters</u> (10nm x 200nm)

- 2. change of space charge in depleted region
 → change of effective doping concentration
- 3. trapping centers created
 - \rightarrow trapping of signal charge

Change of Depletion Voltage V_{dep} (N_{eff})

• "Type inversion": N_{eff} changes from positive to negative (Space Charge Sign Inversion)

fluence (NIEL) > $10^{15} n_{eq}/cm^2$ total dose > 600 kGy / 60 Mrad

Semiconductor detectors in the LHC radiation environment

N. Wermes, EDIT 2015

33

Change of Depletion Voltage V_{dep} (N_{eff})

.... with particle fluence:

• "Type inversion": N_{eff} changes from positive to negative (Space Charge Sign Inversion)

fluence (NIEL) > $10^{15} n_{eq}/cm^2$ total dose > 600 kGy / 60 Mrad

Radiation Damage (NIEL)

N. Wermes, EDIT_2015

Annealing

- shaking the lattice => beneficial annealing
- too long at a high temperature => defects, that did not harm so far, become active => reverse annealing
- hence: keep detectors cool @ -5 to -10° C

solution: oxygenated FZ silicon

Reason: complex interaction of various (point+cluster) defects:

 V_2O interplay with a "shallow donor" that act against each other.

 V_2O originating from point defects decreases with oxygenation. For neutrons different => only clusters. N. Wermes, EDIT_2015
Radiation damage to the FE-electronics ... and cure

Effects: generation of positive charges in the SiO_2 and defects in Si - SiO_2 interface

1. Threshold shifts of transistors

→ Deep Submicron CMOS technologies with small structure sizes (≤ 350 nm) and thin gate oxides (d_{ox} < 5 nm) → holes tunnel out

2. Leakage currents under the field oxide

Layout of annular transistors with annular gate-electrodes
 + guard-rings

Radiation damage to the FE-electronics ... and cure

radiation induced bit errors

("single event upsets" SEU)

large amounts of charge on circuit nodesby nuclear reactions, high track densities -can cause "bit-flip"

2 examples of error resistant logic cells

enlarge storage capacitances in SRAM cells:
 Q_{crit} = V_{threshold} · C

→ storage cells with redundancy (DICE SRAM cell)

information and its inverse stored on 2+2 independent and cross-coupled nodes \rightarrow temporary flip of one node cannot permanently flip the cell.

Noise

Noise in ionisation detectors

When to care about noise ...

even if you are not interested in an energy measurement, remember ... thresholds

shot noise	white noise	
resistor noise		current noise
	switching noise	series noise
flicker noise	popcorn noise	
		Nyquist Noise
Johnson Noise	parallel noise	kT/C noise
1/f nois	RTS noise	Thermal noise

 \rightarrow

 \rightarrow

three physical noise sources:

- number fluctuations of quanta
- velocity fluctuations of quanta

- 1. shot noise
 - 2. 1/f noise
 - 3. thermal noise

 $<i^2> = 2q <i>df$ $<i^2> = const. 1/f df$ $<i^2> = 4kT / R df$

where do they appear in a typical pixel detector readout chain ?

three physical noise sources:

number fluctuations of quanta \rightarrow 1. shot noise $\langle i^2 \rangle = 2q \langle i \rangle df$ 2. 1/f noise2. 1/f noise $\langle i^2 \rangle = const. 1/f df$ velocity fluctuations of quanta \rightarrow 3. thermal noise $\langle i^2 \rangle = 4kT / R df$

where do they appear in a typical pixel detector readout chain ?

three physical noise sources:

number fluctuations of quanta	\rightarrow	1. <mark>shot</mark> noise	<i²> = 2q <i> df</i></i²>
		2. 1/f noise	<i²> = const. 1/f df</i²>
velocity fluctuations of quanta	\rightarrow	3. thermal noise	<i²> = 4kT / R df</i²>

where do they appear in a typical pixel detector readout chain ?

ENC =

equivalent noise charge

 $\frac{\text{noise output voltage (rms)}}{\text{signal output voltage for the input charge of } 1e^{-}$

$$ENC_{tot}^2 = ENC_{shot}^2 + ENC_{therm}^2 + ENC_{1/f}^2$$

charge sensitive preamplifier only

$$ENC_{\text{shot}} = \sqrt{\frac{I_{\text{leak}}}{2q}}\tau_f \qquad = 56e^- \times \sqrt{\frac{I_{\text{leak}}}{nA}}\frac{\tau_f}{\mu s}$$
$$ENC_{\text{therm}} = \frac{C_f}{q}\sqrt{\langle v_{\text{therm}}^2 \rangle} = \sqrt{\frac{kT}{q}}\frac{2C_D}{3q}\frac{C_f}{C_{load}}} = 104e^- \times \sqrt{\frac{C_D}{100\,\text{fF}}}\frac{C_f}{C_{load}}$$
$$ENC_{1/\text{f}} \approx \frac{C_D}{q}\sqrt{\frac{K_f}{C_{ox}WL}}\sqrt{\ln\left(\tau_f\frac{g_m}{C_{load}}\frac{C_f}{C_D}\right)} = 9e^- \times \frac{C_D}{100\,\text{fF}} \text{(for NMOS trans.)}$$

W, L = width and length of trans. gate $K_f = 1/f$ noise coefficient C_{ox} = gate oxide capacitance C_f = feedback capacitance C_{load} = load capacitance C_D = detector capacitance τ_f = feedback time constant

reference Rossi, Fischer, Rohe, Wermes Pixel Detectors. Springer 2006

... with an additional filter amplifier (shaper) being the band width limiter

... with an additional filter amplifier (shaper) being the band width limiter

The typical S/N situation (... here ATLAS pixels)

- Signal of a high energy particle \Rightarrow 19500 e⁻ \rightarrow 10000 e⁻ after irradiation Charge on more than 1 pixel => S/N > 30 \rightarrow S/N \sim 10
- Discriminator thresholds = 3500 e, ~40 e spread, ~170 e noise
- 99.8% data taking efficiency
- 95.9% of detector operational
- \Box ca. 10 µm x 100 µm resolution (track angle dependent)
- □ 12% dE/dx resolution

C. Gemme et al., ATLAS-CONF-2011-016

How to make things better?

- more radiation hard?

- less complex?

- less expensive?

How to make sensors more radiation hard?

800

Diamond sensors: (RD42 & DBM collab)

- ~2000e at $2x10^{16} n_{eq} \text{ cm}^2 \rightarrow \text{need low thresh.}$
- but S/N potentially better than Si at high fluence

current focus on poly-crystalline pixel modules (ATLAS DBM)

Rate and radiation challenges at the innermost pixel layers

NEW developments

DEPFET Pixels -> Belle II Monolithic Pixels -> STAR@RHIC, ALICE (Mixed?) Monolithic/Hybrid -> LHC Upgrade?

(Semi)-Monolithic Pixel Detector Projects

STAR / RHIC MAPS

in operation since 2014

in production for 2017

N. Wermes, EDIT 2015

How does a DEPFET work?

A charge q in the internal gate induces a mirror charge α q in the channel (α <1 due to stray capacitance). This mirror charge is compensated by a change of the gate voltage: $\Delta V = \alpha q / C = \alpha q / (C_{ox} W L)$ which in turn changes the transistor current I_{d} .

FET in saturation:

$$I_{d} = \frac{W}{2L} \mu C_{ox} \left(V_{G} + \frac{\alpha q_{s}}{C_{ox} WL} - V_{th} \right)^{2}$$

$$\label{eq:lastic_linear} \begin{split} & \mathsf{I}_d\text{: source-drain current} \\ & \mathsf{C}_{ox}\text{: sheet capacitance of gate oxide} \\ & \mathsf{W},\mathsf{L}\text{: Gate width and length} \\ & \mu\text{: mobility (p-channel: holes)} \\ & \mathsf{V}_g\text{: gate voltage} \\ & \mathsf{V}_{th}\text{: threshold voltage} \end{split}$$

Conversion factor:

q

$$g_{q} = \frac{dI_{d}}{dq_{s}} = \frac{\alpha\mu}{L^{2}} \left(V_{G} + \frac{\alpha q_{s}}{C_{ox}WL} - V_{th} \right) = \alpha \sqrt{2 \frac{I_{d}\mu}{L^{3}WC_{ox}}}$$
$$g_{m} = g_{q} = \alpha \frac{g_{m}}{WLC_{ox}} = \alpha \frac{g_{m}}{C}$$

How does a DEPFET work?

A charge q in the internal gate induces a mirror charge α q in the channel (α <1 due to stray capacitance). This mirror charge is compensated by a change of the gate voltage: $\Delta V = \alpha q / C = \alpha q / (C_{ox} W L)$ which in turn changes the transistor current I_d .

- Internal amplification $g_q \sim 500 \text{ pA/e}^-$
- Small intrinsic noise
- Sensitive off-state, no power consumption

DEPFET Pixels for Imaging

Developed for X-ray astronomy (XEUS mission) Energy resolution **131 eV** (5.9 keV Fe55) Noise ENC=**2.2 e**⁻ (T=22 °C) Shaping time τ = 10 µs

excellent noise performance due to

- small capacitance (gate channel)
- long shaping time (10 μs)

DEPFET pixel array

- DEPFET pixel transistors arranged in a matrix
- row wise select -> column wise readout of transistor (drain) currents
- Gate and clear lines need a steering chip
- Long drain readout lines to keep material out of the acceptance region
- 100 ns per row
 20 µs per frame

DEPFET PXD ... very different from LHC pixels

N. Wermes, EDIT 2015

CMOS Pixels (sometimes called MAPS)

skip?

From HYBRID to monolithic pixel detectors

- standard HYBRID pixels
 - various sensors: planar-Si, 3D-Si, diamond
 - mixed signal R/O chip (FE-I3, FE-I4, ROC ...)

- Monolithic Active Pixel Sensors
 - MAPS using CMOS with Q-collection in epilayer (usually by <u>diffusion</u> → recent advances)
 - depleted DMAPS using HR substrate or
 HV process to create depletion region:

Diode + Amp + Digital

 $d \sim \sqrt{\rho \cdot V}$

- CMOS on SOI

MAPS - epi

- + 'standard CMOS' process
- + fewer interconnections
- + very thin ... low mass
- + low power
- + small pixel size
- + CMOS circuitry, but limited to NMOS
- small signal
- slow charge collection
- frame readout, rolling shutter
- area limited by chip size
- radiation tolerance

CMOS with epi-layer as active layer

universität**bonn**

MAPS – epi: PROBLEM

- + 'standard CMOS' process
- + fewer interconnections
- + very thin ... low mass
- + low power
- + small pixel size
- + CMOS circuitry, but limited to NMOS
- small signal
- slow charge collection
- frame readout, rolling shutter
- area limited by chip size
- radiation tolerance

important: multiple wells

MAPS for ALICE (2018) and for the ILC (20xx?)

N. Wermes, EDIT_2015

What is needed to make CMOS pixels also usable in the LHC radiation environment?

TCAD simulations: resistivity – voltage – fill factor

Substrate: 10 Ω cm – 2k Ω cm Nwell: 1V – 20 V Pwell: 0V

from Tomasz Hemperek

N. Wermes, EDIT_2015

TCAD simulations: resistivity – voltage – fill factor

Substrate: 10 Ω cm – 2k Ω cm Nwell: 1V – 20 V Pwell: 0V

from Tomasz Hemperek

Fill Factor influence: here at $10^{15} n_{eq}/cm^2$

Electron Velocity

Charge_Collection

N. Wermes, EDIT_2015

Tomasz Hemperek

fraction of collected charge in first 10ns

substrate resistivity [Ωcm]	Bias [V]	Fill Factor [%]
10	1	15
10	20	15
2k	1	15
2k	20	15
2k	20	75

from Tomasz Hemperek
Current approaches (a classification)

HV - CMOS

$$d \sim \sqrt{\rho \cdot V}$$

I. Peric et al.

Nucl.Instrum.Meth. A582 (2007) 876-885 Nucl.Instrum.Meth. A765 (2014) 172-176

- AMS 350 nm and 180 nm HV process (p-bulk) ... 60-100 V
- deep n-well to put nMOS (in extra p-well) and pMOS (limitation)
- \succ ~10 15 μ m depletion depth \rightarrow 1-2 ke signal
- \blacktriangleright various pixel sizes (~20 x 20 to 50 x 125 μ m²)
- can also replace "sensor" (amplified signal) in a "hybrid pixel" bonding (bump, glue, other...) to FE-chip => CCPD

Current approaches (a classification)

Kolanoski, Wermes 2015

^ტ - ი^թ

Mattiazzo, S,. W. Snoeys et al. NIM A718 (2013) 288-291 Havranek, Hemperek, Krüger, NW et al. JINST 10 (2015) 02, P02013

- (D)MAPS like configuration but w/ depleted bulk
- small collection node
- long drift path
- => smaller C, more trapping
- deep n and deep p wells
- large collection node
- short drift path
- => larger C, less trapping

20

Current approaches (a classification)

°+U

would be nice

X-ray photon

N. Wermes, EDIT 2015

- FD-SOI
- OKI/LAPIS/KEK Y. Arai et al.
- issues
 - back gate effect
 - radiation issues due to BOX
- cures invented in recent years
- but not suited for LHC pp
- HV-SOI (thick film)
- Hemperek, Kishishita, Krüger, NW doi:10.1016/j.nima.2015.02.052
- a promising alternative
- doped, non-depleted P- and N-wells prevent back gate effect and increase the radiation tolerance

Prototype results are encouraging ...

XBT01 in test beam - 50x50µm² pixel

Depletion depth $\approx 31 \mu m$ Calculated depth = 36μm (@100 Ωcm, -45V)

observation:

charge collected from high-field (fast drift) and low field (slow diffusion) regions

Semiconductor micro pattern detectors are essential for particle tracking and imaging and new developments are at the forefront of technological advances

- They are the working horse choice for present and future tracking detectors
- There is a large momentum in R&D and building of new detectors for the LHC upgrade
- R&D profits from modern micro technologies and their rapid progress
- Applications spin off to imaging (synchrotron light, X-ray astronomy, medical ...)

Further Reading

- G. Lutz, "Semiconductor Radiation Detectors", Springer Berlin-Heidelberg-New York, 1999.
- Rossi, Fischer, Rohe, Wermes,
 "Pixel Detectors: From Fundamentals to Applications",
 Springer Berlin-Heidelberg-New York, 2006, (ISBN 3-540-283324)
- ATLAS Inner Detector, Aad, G. et al. JINST 3 (2008), P07007.
 CMS Silicon Detector, JINST 3 (2008), S08004,
 ALICE ITS, JINST 3 (2008), S08002.
- review pixel papers
 - N. Wermes, "From Hybrid to CMOS Pixels ... a possibility for LHC's pixel future?" arXiv:1509.09052 [physics.ins-det], subm. to JINST (2015)
 - N. Wermes, "Pixel Detectors for Charged Particles" Nucl.Instrum.Meth. A604 (2009) 370-379, arxiv:physics/0811.4577
- Kolanoski, H. and Wermes, N.
 Particle Detectors Fundamentals and Applications, Springer (2016) in print, English Edition to follow.

Teilchendetektoren

Grundlagen und Anwendungen

🙆 Springer Spektrum

Backup

Solder bumping & flip chip process

Spin coating and printing of Photoresist

Electroplating of Cu and PbSn

Reflow

d)

Resist stripping and wet etching of the plating base

Flip-Chip

Chip 25 µm

N. Wermes, EDIT_2015

a)

3D integration ...

... various CMOS layers

3D integration promises

- higher granularity (smaller pixel size)
- lower power
- large active over total area ratio
- dedicated technology for each functional layer
- but: complex fabrication \rightarrow yield is an issue

