

Laboratory course: Day 4

Electron Test Beam with the Mu2e LYSO+APD matrix prototype

Test Beam @ LNF: Layout of the prototype

• For this exercise we use the matrix prototype built for the Mu2 experiment

A MATRIX of 25 LYSO crystals

- LYSO from (Shanghai) SICCAS High Technology Corporation 30x30x130 mm³
- Each crystal readout by one single 10x10 mm² APDs Hamamatsu S8664-1010
- Gapd = 50
- Each APD amplified by an AMP-HV chip: Gamp = 300
- Readout with 25 channels of 250 msps WFD from CAEN

EDIT 2015: Calorimeter laboratory DAY4

INF

Crystals used: LYSO

LYSO (Ce) =lutetium-yttrium oxyorthosilicate + Cerium doping

- Density = 7.3 g/cm³, Radiation length = 1.14 cm, Moliere Radius = 2.1 cm
- dE/dX = 10 MeV/cm, Refractive index = 1.8, Peak luminescence = 420 nm
- Decay time = 40 ns, Light yield = 85 % of Nal, Hygroscopicity = None
- □ All crystals produced by SICCAS in China
- All crystals characterized for LY with our test station and similar station in Caltech(USA)
- □ All crystals controlled for peak luminescence and longitudinal transmittance
- Good longitudinal uniformity measured on the 25 crystals used

APD used : Hamamatsu S8664-55

Properties	S8664-55	S8664-1010	S1315 (RMD)
Active area (mm ²)	5×5	10×10	13×13
QE (~ 405 nm)	0.65	0.65	0.65
$I_{d}(nA)$	5	10	Not measured
Capacitance Cd	80	270	120
(pF)			
Gain	50 @ 350 V	50 @ 350 V	100 @ 1700 V
Excess noise F	2.0 @ gain =50	1.38 @ gain =50	Not measured

LNF

Matrix assembly: details of the matrix

3M ESR 60 µm reflective wrapping → 20% more light output than Tyvek

APD lodgments created with PVC 3D-printing

Faraday cup

EDIT 2015: Calorimeter laboratory DAY4

INF

Matrix assembly: FEE and cabling

- The project and the development of the FEE have been done at LNF by the SEA electronic department
- The Amp-HV is a multi-layer double-sided discrete component board that carries out the two tasks of amplifying the signal and providing a locally regulated bias voltage, thus significantly reducing the noise looparea.
- DynamicBandwidth
- Rise time
- Polarity
- Output impedance
- Stability with source capacity max
- · Coupling output end source
- Noise, with source capacity 1pf
- Power dissipation
- Power supply
- Input Protector over-Voltage

Amp. 2.5V 70Mbz

6ns

50 Ω

300pf

1000 enc

14mW 6V

10mJ

AC

Reversed

- Adjustment range Vout
- Accuracy, reading and writing, Vout
- Current limiter can be adjusted
- Noise tot.
- Long-term stability
- Settling Time
- Typical power dissipation
- Double filter high Voltage, attenuation

250V to 500V 16 bit tpv. 300uA 2mVpp 100ppm <500 us ρ < 135mW

56db

🛟 Fermilab

Cosmic Rays and Laser System used at MAMI

- One scintillator with double PM readout for the cosmic rays acquisition
- I green laser + diffusive sphere + 25 quartz fibers to monitor the APD+FEE stability

INF

Layout used @ BTF (2014 w.r.t. EDIT)

DAΦNE Lines accelerates, in **Control**ed half, sector Junches 20 ps-long with **C**electable U.e.g., C The beam trigger is given by two scintillating scintillation counters placed in front of the matrix.

- The intrinsic energy resolution of the beam is ~8% a 100 MeV.
- system Same acquisition and readout aster Dsed a MAVETER
- Cosmic ray trigger given by two scintillating palettes coupled to phototupes placed above and below the matrix.

Differences: Giani is not in the layout. Finger scintillators are much closer to the matrix. We do not use the palette for CR

🛟 Fermilab

LNF 7

Layout of cabling

- FEE signal cables go from the calorimeter to the rear side of the "blue" box where two NIM-like boards (B1, B2) are located.
- In each board there is an arm-controller to read/set the HV of each individual calorimeter channel. This is done with a DELL PC in ethernet connection.
- From the boards the signals are repeated on coaxial cables that are then inserted in a FAN-IN/FAN-OUT unit to split the signal to the WFD and to the Analog Sum Unit.

INF

Layout of WFD cabling

EDIT 2015: Calorimeter laboratory DAY4

LNF

Hands on on the detector + fast analysis (1)

- You will use a very simple trigger that works with the OR of two conditions:
 - → a double coincidence between the two plastic "finger" scintillators just in front of the calorimeter surface to delimit the beam spot and provide a good timing start.
 - \rightarrow The analog sum of the 9 innermost crystals
- The e- beam and the cosmic rays will generate signals inside the matrix.
- The e- beam will be provided at the desired energy around 100 MeV but with a multiplicity (typically > 1) that can be tuned by slit adjustement.
- A self-oscillating time unit will also drive at low rate the green laser in order to illuminate all cells and check stability of response along time.

For debugging purposes you can :

(1) Look to the calorimeter signals using the attenuated (1/2) signals from the Fan-In Fan-Out units at the scope.

₹Fermilab

(2) Display the waves from the root trees coming from the readout from the WFD

This is a good training in checking the hardware functionality

Data taking

• Once the beam is arriving to the calorimeter you can start the daq with the following instruction:

>> tcsh

>> source ~/setup_edit.csh

>> godaq

>> \$DAQ_EDIT

To stop data taking .. qq (quit)

- The data files are in ascii format by dumping 1024 samples for all 32 channels and a very simple header to recognize the event number
- Root trees are generated with the following instruction

>> goroot; source doroot_edit.csh runXXXXX Nevent

>> root roottople/runXXXX.root (open the short size file)

>> root roottople/runXXXXfull.root (open the long size file with the waveforms)

- Charge is reconstructed in a fixed time window
- Time is reconstructed by fitting the line shape of the signal in the rise-time

🚰 Fermilab

Hand on on the detector + fast analysis (2)

- Starting from the digitized samples (baseline corrected) in mV vs ns units you can:
 - ightarrow Determine the charge from each channel
 - \rightarrow Estimate the noise of each channel (in keV units)
 - \rightarrow Sum up the calorimeter channels to get Etotal
 - \rightarrow Estimate energy resolution (sigma/peak) and energy scale (pC/MeV)
 - \rightarrow Estimate the Number of photoelectron/MeV
 - \rightarrow Determine the timing and estimate the timing resolution (in ps)
- The HV setting used provide a reasonable equalized starting point for all channels
- We have provided to you trees and examples with reconstructed values but also trees with the full Waveform saved.
 - \rightarrow You can copy a short root file in your notebook and play with that.
 - \rightarrow If you like, you can improve the provided reconstruction by:
 - a) calculating the charge in a fixed window but around the sample with maximum height
 - b) provide a different fit to the waveform to estimate the timing
 - c) Enjoy it.

