Nuclear physics in the era of radioactive ion beams (matter at extremes)

> Nasser Kalantar-Nayestanaki, KVI-CART, University of Groningen

"Excellence in Detectors and Instrumentation Technologies" (EDIT2015) Frascati, Italy, October 23, 2015

university of groningen

Scales

Nuclear physics in the era of radioactive ion beams

university of groningen

Scales

Density scale

Nuclear physics in the era of radioactive ion beams

university of groningen

How to probe (sub)nuclear matter?

Nuclear physics in the era of radioactive ion beams

university of groningen

Forces in nuclei

two protons, 1 fm apart

Strong interaction (QCD)

scale: 1

- responsible for nuclear binding
- alpha decay, nuclear fission and fusion processes
- 2. Electromagnetic interaction scale: 0.01
 - correction to binding energies, N>Z for heavy nuclei
 - gamma decay of excited states
- 3. Weak interaction

scale: 0.0000001

- nuclear beta decay
- mirror symmetry violation
- 4. Gravitational interaction

scale: 10⁻³⁶

Not only the effective strong force, but also e.m. and weak interactions play an important role in understanding nuclear physics!

- forget it!

university of groningen

 kvi - center for advanced radiation technology

Nuclear physics in the era of radioactive ion beams

Nuclear potential (start with NN potential)

Nuclear physics in the era of radioactive ion beams

university of groningen

NN potential, phenomenological structure

Most general two-body potential under those symmetries (Okubo and Marshak, Ann. Phys. 4, 166 (1958))

Nuclear physics in the era of radioactive ion beams

groningen

The Yukawa theory of nuclear forces

S. Tomonaga, H. Yukawa, and S. Sakata in the 1950s.

From:
H. Yukawa,
Proc. Phys.
Math. Soc.
Japan 17, 48
(1935).

In analogy with the scalar potential of the electromagnetic field, a function U(x, y, z, t) is introduced to describe the field between the neutron and the proton. This, function will satisfy an equation similar to the wave equation for the electromagnetic potential.

 $\left\{\Delta - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right\} U = 0$

Now the equation

(1)

(2)

has only static solution with central symmetry $\frac{1}{r}$, except the additive and the multiplicative constants. The potential of force between the neutron and the proton should, however, not be of Coulomb type, but decrease more rapidly with distance. It can be expressed, for example, by

$$- \text{ or } \left(-g^{\frac{q}{r} - \lambda r}, \right)$$

where g is a constant with the dimension of electric charge, i. e., cm.² sec.⁻¹ gr.¹ and λ with the dimension cm.⁻¹

Since this function is a static solution with central symmetry of the wave equation

$$\left\{\Delta - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} - \lambda^2\right\} U = 0, \qquad (3)$$

let this equation be assumed to be the correct equation for U in vacuum. In the presence of the heavy particles, the U-field interacts with them and causes the transition from neutron state to proton state.

Nuclear physics in the era of radioactive ion beams

university of groningen

Effective potentials in nuclei

Nuclear physics in the era of radioactive ion beams

university of groningen

university of groningen

Nuclear Chart

er for advanced technology

advanced ology

What to measure?

Masses determine the atomic and nuclear binding energies reflecting all forces in the atom/nucleus

$$M_{\text{Atom}} = N \cdot m_{\text{neutron}} + Z \cdot m_{\text{proton}} + Z \cdot m_{\text{electron}} - (B_{\text{atom}} + B_{\text{nucleus}})/c^2$$

Nuclear physics in the era of radioactive ion beams

university of groningen

Empirical mass formula

Liquid drop model

Semi-empirical mass formula (Carl Friedrich von Weizsaecker, 1935)

$$E_B = a_V A - a_S A^{2/3} - a_C \frac{Z(Z-1)}{A^{1/3}} - a_A \frac{(A-2Z)^2}{A} + \delta(A,Z)$$

Liquid drop model provides a qualitative description of some of the bulk properties of the nucleus, such as the binding energy

But what about the "magic" numbers? Other models are needed, such as the shell model...

kvi - center for advanced

radiation technology

 $M_{exp} - M_{emp}$

Model differences

Nuclear and astrophysics meet

Mass spectrometry for nucleosynthesis

Mass-measurement techniques

Equation of motion in a Penning trap

plus Lorentz force:

$$\vec{\mathsf{F}} = -\mathbf{e}_0 \vec{\nabla} \phi(\mathbf{r}) + \vec{\mathbf{v}} \times \vec{\mathsf{B}}$$

equation of motion:

$$\vec{\mathsf{F}} = -\mathbf{e}_0(\vec{\nabla}\phi(\mathsf{r}) + \vec{\mathsf{v}} \times \vec{\mathsf{B}}) + \mathbf{m}\vec{\mathsf{r}} = 0$$

axial oscillation

$$\frac{2e_0U_0}{md_0^2} \cdot z + m \, \ddot{z} = 0$$

$$\omega_z = \sqrt{\frac{2e_0U_0}{md_0^2}}$$

z or axial frequency

radial oscillation

substitution:

$$u = x + iy$$

$$\omega_c = \frac{e_0}{m} B \qquad i\omega_c \dot{\mathbf{u}} - \frac{\omega_z^2}{2} \mathbf{u} + \dot{\mathbf{u}} = 0$$
$$u(t) = u_0 e^{-i\omega t}$$

$$\omega_{+} = \frac{\omega_{c}}{2} + \sqrt{\frac{\omega_{c}^{2}}{4} - \frac{\omega_{z}^{2}}{2}}$$

$$\omega_{-} = \frac{\omega_{c}}{2} - \sqrt{\frac{\omega_{c}^{2}}{4} - \frac{\omega_{z}^{2}}{2}}$$

modified cyclotron frequency

magnetron frequency

Penning trap at work

The free cyclotron frequency is inverse proportional to the mass of the ions!

 $\omega_c = qB/m$

An *invariance theorem* saves the day:

$$\omega_{c}^{2} = \omega_{+}^{2} + \omega_{-}^{2} + \omega_{z}^{2} \qquad \omega_{c} = \omega_{+} + \omega_{z}^{2}$$

L.S. Brown, G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986). K. Blaum, Phys. Rep. 425, 1 (2006).

Penning trap measurement

Mass measurement in a storage ring

SCHOTTKY MASS SPECTROMETRY _____

ISOCHRONOUS MASS SPECTROMETRY

Using storage rings

Schottky Mass Spectrometry (with cooling): $T_{\frac{1}{2}} > 1$ s

Isochronous Mass Spectrometry: $T_{\frac{1}{2}} > 10 \ \mu s$

resolving power $\sim 10^6$ accuracy $\sim 30 \ \mu u$, i.e. $\sim 30 \ keV$

university of groningen

Schottky Mass Spectrometry

Shell structure of nuclei

Nuclear physics in the era of radioactive ion beams

university of groningen

 $M_{exp} - M_{emp}$

Two-neutron separation energies

Mean-field model of nuclei

Nuclear physics in the era of radioactive ion beams

university of groningen

Validity of Mean Field Concept

J. Cavedon et al., Phys. Rev. Lett. 49 (1982) 978.

Electron Scattering Charge density difference between ²⁰⁶Pb and ²⁰⁵TI ²⁰⁶Pb and ²⁰⁵TI differ in IPM by one 3s _{1/2} proton

Nuclear physics in the era of radioactive ion beams

university of groningen

Coincidence electron measurements

Basic kinematics

$$k, k', p, p', q - 4 \text{-momenta of particles}$$

$$\nu - \text{energy transfer}$$

$$q - 4 \text{-momentum transfer}$$

$$M - \text{mass of proton p}$$

$$W - \text{invariant mass of p'}$$

$$p' = p + q$$

$$(p'^2) = (p+q)^2 = p^2 + p + q$$

$$(p'^2) = (p+q)^2 = p^2 + p + q$$

$$Q^2 = M^2 + 2M\nu - W^2$$

Nuclear physics in the era of radioactive ion beams

university of groningen

Single-particle structure

Nuclear physics in the era of radioactive ion beams

university of groningen

Single-particle structure

Z

Deviation from the independent-particle picture: Correlations: Configuration mixing,

Coupling to collective phonons Short-range correlations → high momenta → reduced single-particle strength (occupations, spectroscopic factors)

Nuclear physics in the era of radioactive ion beams

Direct reactions for (one-) nucleon removal

Quasi-free scattering

Incoming Particles

Nuclear physics in the era of radioactive ion beams

p(²⁰O, pp¹⁹N)

Spectroscopic factors for neutron-proton asymmetric nuclei

Figure from Alexandra Gade, Phys. Rev. C 77, 044306 (2008)

Nuclear physics in the era of radioactive ion beams

university of groningen

Reactions with Relativistic Radioactive Beams

The R³B experiment:

- identification and beam "cooling" (tracking and momentum measurement, $\Delta p/p \sim 10^{-4}$)
- · exclusive measurement of the final state:
 - identification and momentum analysis of fragments
 (large acceptance mode: Δp/p~10⁻³, high-resolution mode: Δp/p~10⁻⁴)
 - coincident measurement of neutrons, protons, gamma-rays, light recoil particles
- applicable to a wide class of reactions

university of groningen

Reactions with Relativistic Radioactive Beams R³B

GLAD magent

The Collective Response of the Nucleus: Giant Resonances

Electric giant resonances

ISGDR

Nuclear physics in the era of radioactive ion beams

university of groningen

 kvi - center for advanced radiation technology

M. Itoh

Kinematics for inverse reaction for ⁵⁶Ni

Setup @ ESR

kvi - center for advanced radiation technology

Nuclear physics

The new ESR Scattering chamber

radiation technology

groningen

Nuclear physics in the era of radioactive ion beams

First results with radioactive beam ⁵⁶Ni(p,p), E = 400 MeV/u

First results with radioactive beam

• Elastic p-scattering off ⁵⁶Ni (E105), M. von Schmid

Nuclear physics in the era of radioactive ion beams

university of groningen

Nuclear physics in the era of radioactive ion beams

university of groningen

Nuclear physics in the era of radioactive ion beams

university of groningen

GSI and FAIR overview

Improvements over the present

Primary beams:

- Factor 100-1000 over present intensities

Secondary beams:

- Broad range of radioactive beams up to 1.5-2 GeV/u; factor of 10000 improvement in intensity with respect to the present facilities

university of groningen

Conclusions and outlook

- Many unanswered questions will be addressed with the new generation facilities.
- Various aspects of nuclear matter (sizes, shapes, interactions, limits of stability etc. etc.) will be studied in the coming years.
- Understanding the structure of nuclei and the forces governing them will also give clues on how the stars are formed and evolve.
- Many laboratories capable of producing intense radioactive beams have come online or are in the process of building.
- State-of-the-art detection techniques are being developed to go to the extremes

Nuclear physics in the era of radioactive ion beams

university of groningen

Thank you!

Nuclear physics in the era of radioactive ion beams

university of groningen