
XILINX ISE AND SPARTAN 3AN TUTORIAL

SYNTETIZE AND SIMULATION--
This tutorial will show you how to create a simple Xilinx ISE project based on the
Spartan-3 Board. It will be implemented a simple decoder circuit that uses the
switches on the board as inputs and the eight LEDs as outputs. There are several
parts in this tutorial. Part 1 shows the basics of creating a simulating a project in
Xilinx ISE. Part 2 shows how to generate the bit file that will be used to program the
SPARTAN 3AN/3A BOARD FPGA internal memory. Part 3 shows how to program
the board.

Select File à New Project

Select a project location and name. For this tutorial we will name the project
“decoder”.
Click Next and select the Spartan 3AN Starter Kit (or the Spartan 3A Kit)in the
Evaluation Development Board category (check Preferred Language field: must be
VHDL).

Click Next and Finish.
Right-click and select New Source.

Select VHDL Module and assign “decoder” name.

You can now specify the inputs and outputs for the decoder. These will be inserted
into an automatically generated template of the VHDL file. We have one 3-bit input
(“sel”) and one 8- bit output (“y”):

Click Next. A summary window will be shown.

Click Finish and decoder.vhd will be shown in the top-left sources and on the
window editor.

You are required to describe the behavior of the decoder using statements in the
architecture body. In this example we will use conditional signal assignment
statements; insert the code between begin and end.

Select again New Source

Select VHDL Test Bench and assign the name decoder_tb.
Selecting Next the “Associate Source” panel will be shown. Click Next and Finish.
The “decoder_tb.vhd” is shown in the editor panel.

Look at the file produced. Insert the instructions after the comment
-- insert stimulus here.

Modify also the clk sections of code as shown

or remove all the clk sections and change the “wait for clk_period*5;” to “wait for
50 ns”.

Check that Implementation is selected in the Project Manager View panel that
and double-click Syntetize-XST.

Select Simulate in the Project Manager View. Some errors will be shown in the
console. Correct them (add semicolon after sel statement) and save the project. The
errors should disappear.

Select “decoder_tb” in the hierarchy window and expand ISim Simulator

Double-click Simulate Behavioral Model.

Simulation window will show the result of simulation.

PROJECT IMPLEMENTATION--

Again select New Source

select Implementation Constraint Files (you will have to check the Spartan 3AN
specifications to find out UCF constraints for slide switches and leds) and assign the
name “decoder_ucf” to the file, click next

A summary window shows up, click finish.

Now we have to map our signals to the board input/output. From the board user
guide

we get the map of the UCF constraint file for the Slide Switches and leds.

Spartan-3A/3AN FPGA Starter Kit Board User Guidewww.xilinx.com 25
UG334 (v1.1) June 19, 2008

R

Chapter 2

Switches, Buttons, and Rotary Knob

Slide Switches

Locations and Labels
The Spartan®-3A/3AN FPGA Starter Kit board has four slide switches, as shown in
Figure 2-1. The slide switches are located in the lower right corner of the board and are
labeled SW3 through SW0. Switch SW3 is the left-most switch, and SW0 is the right-most
switch.

Operation
When in the UP or ON position, a switch connects the FPGA pin to 3.3V, a logic High.
When DOWN or in the OFF position, the switch connects the FPGA pin to ground, a logic
Low. The switches typically exhibit about 2 ms of mechanical bounce. There is no active
debouncing circuitry, although such circuitry could easily be added to the FPGA design
programmed on the board.

UCF Location Constraints
Figure 2-2 provides the UCF constraints for the four slide switches, including the I/O pin
assignment and the I/O standard used. The PULLUP resistor is not required, but it defines
the input value when the switch is in the middle of a transition.

Figure 2-1: Four Slide Switches
UG330_c2_01_021507

LOW, ‘0’

HIGH, ‘1’

SW3
(T9)

SW2
(U8)

SW1
(U10)

SW0
(V8)

26 www.xilinx.comSpartan-3A/3AN FPGA Starter Kit Board User Guide
UG334 (v1.1) June 19, 2008

Chapter 2: Switches, Buttons, and Rotary Knob R

SUSPEND Switch
The SUSPEND slide switch, shown in Figure 2-3, connects directly to the FPGA’s
SUSPEND input pin. If Suspend mode is enabled in the FPGA application, then the FPGA
enters Suspend mode whenever the switch is set to “SUSPEND.” If the switch is then
changed back to “RUN,” then the FPGA resumes operation from the state before it entered
Suspend mode. Likewise, if Suspend mode is enabled, then the AWAKE pin is reserved to
indicate when the FPGA is in Suspend mode. See “AWAKE LED,” page 32.

To enable Suspend mode, add the configuration string shown in Figure 2-4 to the user
constraints file (UCF). If Suspend mode is not enabled in the application, then the
SUSPEND switch has no affect on the design and the AWAKE pin is available as a general-
purpose I/O.

For more information on Suspend mode, see the following application note:

• XAPP480: Using Suspend Mode in Spartan-3 Generation FPGAs
www.xilinx.com/support/documentation/application_notes/xapp480.pdf

Figure 2-2: UCF Constraints for Slide Switches

NET "SW<0>" LOC = "V8" | IOSTANDARD = LVCMOS33 ;
NET "SW<1>" LOC = "U10"| IOSTANDARD = LVCMOS33 ;
NET "SW<2>" LOC = "U8" | IOSTANDARD = LVCMOS33 ;
NET "SW<3>" LOC = "T9" | IOSTANDARD = LVCMOS33 ;

Figure 2-3: Suspend Switch

Figure 2-4: UCF Constraints to Enable Suspend Mode

UG334_c2_03_052407

SUSPEND

RUN

CONFIG ENABLE_SUSPEND = “FILTERED” ;

30 www.xilinx.comSpartan-3A/3AN FPGA Starter Kit Board User Guide
UG334 (v1.1) June 19, 2008

Chapter 2: Switches, Buttons, and Rotary Knob R

UCF Location Constraints
Figure 2-11 provides the UCF constraints for the rotary encoder/push-button switch,
including the I/O pin assignment and the I/O standard used, and defines a pull-up or
pull-down resistor for each FPGA input.

Discrete LEDs

Locations and Labels
The Spartan-3A/3AN Starter Kit board has eight individual surface-mount LEDs located
immediately above the slide switches as shown in Figure 2-12. The LEDs are labeled LED7
through LED0. LED7 is the left-most LED, LED0 the right-most LED.

Figure 2-10: Outputs from Rotary Shaft Encoder Might Include Mechanical Chatter

A

B D
et

en
t

D
et

en
t

UG230_c2_07_030606

Rotating RIGHT

Switch closing chatter on ‘B’
injects false “clicks” to the LEFT
(’B’ rising edge when ‘A’ is Low)

Switch opening chatter on ‘A’
injects false “clicks” to the RIGHT

Rising edge on ‘A’ when ‘B’ is Low indicates RIGHT (clockwise) rotation

Figure 2-11: UCF Constraints for Rotary Push-Button Switch

NET "ROT_A" LOC = "T13" | IOSTANDARD = LVCMOS33 | PULLUP ;
NET "ROT_B" LOC = "R14" | IOSTANDARD = LVCMOS33 | PULLUP ;
NET "ROT_CENTER" LOC = "R13" | IOSTANDARD = LVCMOS33 | PULLDOWN ;

Figure 2-12: Eight Discrete LEDs
UG334_c2_12_052407

LE
D

7:
 (W

21
)

LE
D

6:
 (Y

22
)

LE
D

5:
 (V

20
)

LE
D

4:
 (V

19
)

LE
D

3:
 (U

19
)

LE
D

2:
 (U

20
)

LE
D

1:
 (T
19
)

LE
D

0:
 (R

20
)

Add our constraint file assigning the nets of our project

Now we’re ready to implement our project. Double-click generate programming file

Spartan-3A/3AN FPGA Starter Kit Board User Guidewww.xilinx.com 31
UG334 (v1.1) June 19, 2008

Optional Discrete LEDsR

Operation
Each LED has one side connected to ground and the other side connected to a pin on the
device via a 390Ω current limiting resistor. To light an individual LED, drive the associated
FPGA control signal High.

If the FPGA is not yet configured, the LEDs may be dimly lit because pull-up resistors are
enabled during configuration. The FPGA’s PUDC_B pin is connected to GND on the
board.

UCF Location Constraints
Figure 2-13 provides the UCF constraints for the four push-button switches, including the
I/O pin assignment, the I/O standard used, the output slew rate, and the output drive
current.

Optional Discrete LEDs
The Spartan-3A/3AN Starter Kit board provides two optional LEDs, shown in Figure 2-14.
Depending on which features are used by an application, these LED connections may be
also used as user-I/O pins.

Figure 2-13: UCF Constraints for Eight Discrete LEDs

NET "LED<7>" LOC = "W21" | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 8 ;
NET "LED<6>" LOC = "Y22" | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 8 ;
NET "LED<5>" LOC = "V20" | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 8 ;
NET "LED<4>" LOC = "V19" | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 8 ;
NET "LED<3>" LOC = "U19" | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 8 ;
NET "LED<2>" LOC = "U20" | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 8 ;
NET "LED<1>" LOC = "T19" | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 8 ;
NET "LED<0>" LOC = "R20" | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 8 ;

Figure 2-14: AWAKE and INIT_B LEDs

YELLOW

FPGA_AWAKE
(AB15)

YELLOW

FPGA_INIT_B
(W21)
RED

UG334_c2_14_052407

FPGA DONE Pin
(Lit when FPGA is configured)

GREEN

FPGA PROG_B Pin
(Press to reset/reprogram FPGA)

PROGRAM THE DEVICE--

Double-click Configure Target Device

A warning window appear. Click OK

The Impact window shows up. Double-click Boundary Scan to detect connected
devices and then initialize the chain.

Two components are detected. The FPGA and The EEPROM. Click Yes to assign the
files.

The FPGA is firstly selected together with a browser. Select the “decoder.bit” file
and click Open.

Click No in the next window and then Bypass (note that the decoder.bit file has
been assigned to the FPGA)

A summary window appear. Click OK.

Finally we have to download the .bit file in the FPGA. Right-click the FPGA and
select Program

A confirm window shows-up. Congratulation, you’ve programmed your first FPGA.

