

Raman Spectroscopy of Graphene

Alessandra Di Gaspare

Laboratori Nazionali di Frascati

Raman Spectroscopy: basics

Optical Spectroscopy for Material Science

Photons: probe and output measure of scattered light at $v'=v_{ex}+\Delta v$ non-linear process by considering VIS light and typical Δv —> Vibrational levels in material systems (molecules, solids,...)

Raman Mechanism

Spatial charge separation under electric field *E* induced dipole moment μ ; emission of photons with $I \propto \mu''$

 $\mu = \alpha E_0$ a: polarizability; $E = E_0 \cos 2\pi v_0 t - \mu = \alpha E_0 \cos 2\pi v_0$

Internal vibrational motion with Eigenfrequency $v_{\rm M} -> q = q_0 \cos 2\pi v_{\rm M} t$ Polarizability $\alpha = \alpha_{\rm q=0} + (\partial \alpha/\partial q)_{\rm q=0} q$ + higher order terms

$$\mu = \alpha E = (\alpha_{q=0} + (\partial \alpha/\partial q)_{q=0} q_0 \cos 2\pi v_M t) E_0 \cos 2\pi v_0 t$$

$$= \alpha_{\rm q=0} \, E_{\rm 0} \, \cos 2\pi v_0 t + 1/2 (\partial \alpha/\partial q)_{\rm q=0} \, q_0 \, E_{\rm 0} \, [\cos 2\pi (v_0 - v_{\rm M}) t + \cos 2\pi \, (v_0 + v_{\rm M}) t]$$

Why Raman?

Information on rotational and vibrational levels

Raman effect small but accessible by use of lasers

Raman Intensities are 0.001% of Source Intensity and ∝v⁴

VIS and UV sources, Lasers; Δv <≈ 4000 cm⁻¹

(vibrational transitions in molecules, phonons in solids, el. transitions)

- In situ analysis of organic and inorganic compounds
- Analysis of aqueous solutions and solids (water does not interfere)

Raman Shift

 $\Delta\lambda=10 \text{ um}$

 $\Delta E = 124 \text{ meV}$

 $\Delta v = 1000 \text{ cm}^{-1}$

Complementary information to IR spectroscopy

Raman Spectroscopy Systems

- holographic notch filters 80% T of Raman light
- 324 1339 nm available
- single transmission grating
 0 4400 cm⁻¹ (multiplex)
- high light throughput cooled CCD (~ 40% QE)

Such Elements can be included in a Raman Microscope:

- -diffraction limit lateral resolution
- -optical and Raman images (2D mapping)

Graphene as emerging platform material

Graphene

(Nobel prize in 2010) 2D-honeycomb array of C-atoms linear dispersion at the Dirac Point electrons and holes are massless relativistic particles with $v_F \, 10^6 \, \text{m/s}$

Gapless material High chemical stability, carrier mobility $\mu \sim 2*10^5 \text{ cm}^2/\text{Vs}$

Broad range of applications...

Graphene Device Technology

1.Microwave Mixers for ICs

Y. – M. Lin et al, Science 2011 IBM group Graphene from CVD on SiC Mixer operation up to 10GHz

2.Hot-Electron Bolometers in the IR range

J. Yan, Nat. Nano 2012 Univ. Maryland HEB response at the charge neutrality point Exfoilated graphene

Graphene @LNF The GARFIELD Project

Funded by CSN5-INFN, 2-years project started in 2014

GARFIELD Key concept:

G-based devices for novel schemes of radiation detection

Objectives of the Project:

- •Implementation of a full-capability grapheneplatform within the LNF-INFN (Material Science Lab - DAFNE-L)
- •Development of graphene-based detectors for application of recognized interest to the INFN (prototypes/proof-of-concepts devices)

Epitaxial Graphene on Transition Metals

- Chemical Vapor Deposition (CVD) on transition metal substrates: the most promising and readily accessible method to obtain high-quality graphene on large area
- Self-limiting growth; Low defect density

Graphene CVD on Cu

Substrate easy to remove, inexpensive,...
T 1000°C, pressure not usable in UHV systems

Atmospheric pressure CVD System Quartz Tube Chamber (High-T, controlled atmosphere)

The Graphene CVD Facility @LNF

Spectroscopic Analysis of Graphene

- Raman Spectroscopy:
- strongest spectral fingerprint, 2D-mapping, multilayer, defects,... (non-metallic substrate)
- High Throughput, Non Destructive, Quick, Substrate Independent Identification

MicroRaman @LNF

Spectroscopic Analysis of Graphene

3 spectral fingerprints

1- G peak: in plane phonon vibration

(sp2 carbon)

Raman Data from Ferrari group

A. Ferrari et al, presentation @NT2006

Double resonance G'

2- 2D peak: II-order overtone of a different in- plane vibration

3- D peak: intervalley phonon and defect scattering not visible in **pristine graphene** because of crystal symmetries.

A charge carrier must be excited and inelastically scattered by a phonon, then a second elastic scattering by a defect or zone boundary must occur to result in recombination

The presence and the weight of the D peak i related to order and defects!!!

2D peak

2D peak in sp2 carbon is always allowed because the second scattering (either on the initially scattered electron/hole or its complementary hole/electron) in the process is also an inelastic scattering from a second phonon

Because of added forces from the inter-layer interactions, as the number of graphene layers increases, the spectrum will change from that of single-layer graphene, namely a splitting of the 2D peak into an increasing number of modes that can combine to give a wider, shorter, higher frequency peak...

the number of layers can be derived from the ratio of peak intensities,

I_{2D}/I_G!!!

Raman Spectra of Graphene-on-Cu

Graphene on Silicon

20 um

optical and Raman images

Today

1-Graphene Monolayer grown @LNF and transfered on SiO2/Si

2-Graphene Monolyayer on Cu Substrate

3-Raman on Highly Oriented Pyrolytic Graphite highly-pure -laminar and ordered graphite artificially synthesized Standard substrate for different Scanning Probe Microscopes (STM, etc...)

