Excellence in Detectors and Instrumentation Technologies INFN - Laboratori Nazionali di Frascati, Italy October 20-29, 2015

Transverse Phase Space: Beam Size and Emittance

Tasks: Emittance Diagnostics

- estimate the image resolution for an optical synchrotron radiation profile monitor
 - modern 3rd generation light source: $E = 6 \text{ GeV}, \lambda_{obs} = 500 \text{ nm}, \sigma_v = 10 \mu \text{m}$
 - \rightarrow assume "self diffaction", i.e. aperture limitation imposed by radiation angular distribution (1/ γ)
- derive the single particle transport matrix for a drift space
 - > assume paraxial approximation

 \rightarrow sin(x') \approx x'

- calculate the evolution of the beam size after a drift space
 - > use the beam matrix transformation together with the transport matrix R for a drift space

investigate the performance of the CCD

- > spatial calibration \rightarrow dot grid target (0.5 mm spacing)
- > resolution \rightarrow Siemens star, USAF 1951 target

measure the emittance of the laser beam

- > measure spot sizes for different distances of the lens
- > analyse the horizontal profiles as function of the lens position
- \rightarrow calculate the laser beam emittance \rightarrow use the simplest way with only 2 values
- (repeat with a different scintillator thickness)

Transverse Emittance

- projection of phase space volume
 - > separate horizontal, vertical and longitudinal plane
- accelerator key parameter
 - defines luminosity / brilliance

Iinear forces

- any particle moves on an ellipse in phase
 space (x,x')
- > ellipse rotates in magnets and shears along drifts
 - \rightarrow but area is preserved: **emittance**

transformation along accelerator

- knowledge of the magnet structure (beam optics) \rightarrow
 - \rightarrow single particle transformation

$$\begin{pmatrix} x \\ x' \end{pmatrix}_{f} = \begin{pmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{pmatrix} \cdot \begin{pmatrix} x \\ x' \end{pmatrix}_{i}$$

(α , β , γ , ϵ : Courant-Snyder or Twiss parameters)

- transformation from initial (i) to final (f) location
 - \rightarrow transformation of optical functions

$$\begin{pmatrix} \beta \\ \alpha \\ \gamma \end{pmatrix}_{f} = \begin{pmatrix} R_{11}^{2} & -2R_{11}R_{12} & R_{12}^{2} \\ -R_{11}R_{21} & 1+R_{12}R_{21} & -R_{12}R_{22} \\ R_{21}^{2} & -2R_{21}R_{22} & R_{22}^{2} \end{pmatrix} \cdot \begin{pmatrix} \beta \\ \alpha \\ \gamma \end{pmatrix}_{i}$$

EDIT 2015, Frascati (Italy), 23./27.October 2015

Gero Kube & Kay Wittenburg, DESY / MDI

Transverse Emittance Ellipse

Emittance and Beam Matrix

beam matrix

$$\Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix} = \begin{pmatrix} \langle x^2 \rangle & \langle xx' \rangle \\ \langle xx' \rangle & \langle x'^2 \rangle \end{pmatrix} = \varepsilon \begin{pmatrix} \beta & -\alpha \\ -\alpha & \gamma \end{pmatrix}$$

$$\mathcal{E} = \sqrt{\det \Sigma} = \sqrt{\Sigma_{11} \cdot \Sigma_{22} - \Sigma_{12}^2}$$

transformation of beam matrix

$$\Sigma^{1} = \mathbf{R}\Sigma^{0}\mathbf{R}^{T} \qquad R = \begin{pmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{pmatrix}$$

• via Twiss parameters

$$\varepsilon = \gamma x^2 + 2\alpha x x' + \beta x'^2$$

statistical definition

P.M. Lapostolle, IEEE Trans. Nucl. Sci. NS-18, No.3 (1971) 1101

$$\varepsilon_{rms} = \sqrt{\left\langle x^2 \right\rangle \left\langle x'^2 \right\rangle - \left\langle xx' \right\rangle^2}$$

 2^{nd} moment of beam distribution $\rho(x)$

$$\left|x^{2}\right\rangle = \frac{\int_{-\infty}^{\infty} \mathrm{d}x \, x^{2} \cdot \rho(x)}{\int_{-\infty}^{\infty} \mathrm{d}x \, \rho(x)}$$

- > ϵ_{rms} is measure of spread in phase space
- > root-mean-square (rms) of distribution $\sigma_x = \left\langle x^2 \right\rangle^{1/2}$
- $\epsilon_{\rm rms}$ useful definition for non-linear beams
 - \rightarrow usually restriction to certain range

(c.f. 90% of particles instead of $[-\infty, +\infty]$)

Beam Matrix based Measurements

• starting point: beam matrix

• emittance determination

- measurement of **3** matrix elements Σ_{11} , Σ_{12} , Σ_{22}
- **remember:** beam matrix σ depends on location, i.e. $\Sigma(s)$
 - \rightarrow determination of matrix elements at same location required

access to matrix elements

٥

- > profile monitor determines only $\sigma = \sqrt{\Sigma_{11}}$
- other matrix elements can be inferred from beam profiles taken under various transport conditions
 - \rightarrow knowledge of transport matrix R required

\rightarrow more than 3 profile measurements favourable, data subjected to least-square analysis

 $\Sigma^{b} = \boldsymbol{R} \cdot \Sigma^{a} \cdot \boldsymbol{R}^{T} \qquad \boldsymbol{R} = \begin{pmatrix} \boldsymbol{R}_{11} & \boldsymbol{R}_{12} \\ \boldsymbol{R}_{22} & \boldsymbol{R}_{22} \end{pmatrix}$

$$\Sigma_{11}^{b} = R_{11}^{2} \cdot \Sigma_{11}^{a} + 2R_{11}R_{12} \cdot \Sigma_{12}^{a} + R_{12}^{2} \cdot \Sigma_{22}^{a}$$

- measurement : profilesknown: transport optics
- > **deduced:** matrix elements

 $\sigma^{a,b,c} = \sqrt{\Sigma_{11}^{a,b,c}}$ R,\overline{R} $\Sigma^{a} \Sigma^{a} \Sigma^{a}$

 $\Sigma^a_{11}, \Sigma^a_{12}, \Sigma^a_{22}$

 $\varepsilon = \sqrt{\det \Sigma} = \sqrt{\Sigma_{11} \cdot \Sigma_{22} - \Sigma_{12}^2}$

• transfer matrices

• fundamental resolution limit

 \rightarrow location of emission point ?

 $\Rightarrow \qquad \Delta x \approx \frac{\lambda}{2\sin \theta}$

Emittance Measurement Test Setup

• test setup

screen : Al_2O_3 :Cr (Chromox), thickness 1.0 mm / 0.5 mm / 0.3 mm

• calibration / resolution targets

	Siemens star:	focusing
>	USAF 1951-target:	resolution
•	dot grid target:	calibration

Parameters

CCD

Phytec USB-CAM 051H

Resolution	2592 x 194 1600 x 1200 10	2 x 1944 (5 MPix), 2048 x 1536 (3,1MPix), 0 x 1200 (2MPix), 1280 x 960 (1,2MPix) 1024 x 768 (0,8MPix), 640 x 480 (VGA)			
Model	USB- CAM- 051H	USB- CAM- 151H	USB- CAM- 052H	USB-CAM-152H	
color / monochrom	monoo	chrom	color		
Sensor Format			1/2,5"		
Image Sensor		Aptina	MT9P031, CMOS		
Pixel Size	2,2 μm x 2,2 μm				
Color format	Y8		RGB32, RGGB (Raw)		
Lens Holder		С	/ CS – Mount		
fps					
Dynamic Range	8 bit				
Shutter	Rolling				
Light sensitivity	1,4 V/lux-sec				
Interface	USB 2.0 High Speed				
Exposure time	1/10.000 s to 30 s				
Gain	0 dB to 18 dB				
White Balance	-		-6 dB bis +6 dB		
Power supply	4,5 V bis 5,5V DC				
Power Consumption	Circa 250 mA bei 5V			5V	
Feature (optional)	-	ext. Trigger, Digital- Output	-	ext. Trigger, Digital-Output	
Temperature range	-5°C bis +45°C				
Dimensions (B x L x H)	36 mm x 36 mm x 25 mm				
Fixing	1/4" and M6x8 on all sides				
Weight	70 g				
Connection	USB Mini-B				
Feature- Connection	-	Hirose HR10A- 7R-4P	-	Hirose HR10A-7R-4P	

screen

- material: Al₂O₃:Cr (Chromox)
- thickness: 1.0 mm / 0.5 mm / 0.3 mm

• dot grid target

> spacing: 0.5 mm

• USAF 1951 target

Wikipedia says...

The **1951 USAF resolution test chart** is a <u>resolution</u> test pattern conforming to MIL-STD-150A standard, set by <u>US Air Force</u> in 1951. It is still widely accepted to test the resolution of optical imaging systems such as <u>microscopes</u>, <u>cameras</u> and <u>image scanners</u>, although MIL-STD-150A was cancelled on October 16, 2006. The pattern consists of groups of three bars with dimensions from big to small. The largest bar the imager cannot discern is the limitation of its resolving power...

Number of Line Pairs / mm in USAF Resolving Power Test Target 1951									
	Group Number								
Element	1	2	3	4	5				
1	2.00	4.00	8.00	16.00	32.0				
2	2.24	4.49	8.98	17.96	35.9				
3	2.52	5.04	10.08	20.16	40.3				
4	2.83	5.66	11.31	22.63	45.3				
5	3.17	6.35	12.70	25.40	50.8				
6	3.56	7.13	14.25	28.51	57.0				

CCD Readout: Introduction

• readout program PHYTEC Vision Demo 2.2

CCD Readout: Introduction

ImageJ: Introduction

- load image file \rightarrow File \rightarrow Open (Shortcut: Ctrl + O)
- select ROI: in start panel: select left button (below "File"), usually already pre-selected then with left mouse button: draw rectangular ROI
- plot horizontal projection \rightarrow Analyze \rightarrow Plot Profile (Shortcut: Ctrl + k)

ImageJ: Introduction

HELMHOLTZ GEMEINSCHAFT

 $\frac{(x-c)}{2d^2}$

• profile fitting \rightarrow Analyze \rightarrow Tools \rightarrow Curve Fitting... load profile data: **Curve Fitter** Apply 🗌 Show settings ▼ Fit Open traight Line 0.00 0.00 1.00 0.90 load data file 2.00 4.50 8.00 3.00 4.00 18.00 5.00 24.00 Curve Fitter delete bad data: Straight Line Fit Open Show settings -Apply Х Y ۰ 14.781 0 1 14.793 remove first line in file 2 14.793 select fit function: X **Curve Fitter** fit profile data $y = a + (b - a) \cdot e^{-b}$ Fit Show settings Open Apply Gaussian ×∥ 0 14.781 ۰ 1 14.793

ImageJ: Introduction

• additional data fitting

- > create data file \rightarrow e.g. simple ASCII text file with Notepad
- > repeat fitting as described before

GEMEINSCHAFT