Accelerator Laboratory:

Introduction to Beam Diagnostics and Instrumentation

Gero Kube, Kay Wittenburg DESY / MDI
-Introduction

- Beam Position Monitor
- Transverse Emittance / Beam Profile

Diagnostics and Instrumentation

- instrumentation
> catchword for all technologies needed to produce primary measurements of beam parameters
- diagnostics
> making use of these instruments in order to
- operate the accelerators
\rightarrow orbit control
- improve the accelerator performance
\rightarrow feedback, emittance preservation
- deduce additional beam parameters or performance indicators of the machine by further data processing
\rightarrow chromaticity measurements, betatron matching, ... (examples for circular accelerator)
- detect equipment faults
H. Schmickler, Introduction to Beam Diagnostics, CAS 2005
- outline
\Rightarrow emphasis on beam instrumentation

Beam Instrumentation for...

- beam position
- orbit, lattice parameters, tune, chromaticity, feedback,...
- beam intensity

- dc \& bunch current, coasting beam, lifetime, efficiencies,...
- beam profile

> longitudinal and transverse distributions, emittances,...
- beam loss
> identify position of losses, prevent damage of components,...

- beam energy
- mainly required by users,...
- luminosity (collider)
> key parameter, collision optimization...
and even more: charge states, mass numbers, timing...

Beam Monitors: Physical Processes

- influence of particle electromagnetic field
> non-propagating fields, i.e. electro-magnetic influence of moving charge on environment
\rightarrow beam transformers, pick-ups, ...
$>$ propagating fields, i.e. emission of photons
\rightarrow synchrotron radiation monitors, (OTR), \ldots
particle electromagnetic field

relativistic contracion characterized by Lorentz factor

$$
\gamma=E / m_{0} c^{2} \quad \begin{aligned}
& E: \text { total energy } \\
& m_{0} c^{2}: \text { rest massenergy }
\end{aligned}
$$

$$
\text { proton: } \quad m_{p} c^{2}=938.272 \mathrm{MeV}
$$

$$
\text { electron: } \quad m_{e} c^{2}=0.511 \mathrm{MeV}
$$

Beam Monitors: Physical Processes

$>$ non-propagating field
transverse electrical field components

Beam Monitors: Physical Processes

- Coulomb interaction of charged particle penetrating matter
\rightarrow viewing screens, residual gas monitors, ...

$$
-\frac{d E}{d x}=4 \pi N_{A} r_{e}^{2} m_{e} c^{2} \frac{Z_{T}}{A_{T}} \rho \frac{Z_{p}^{2}}{\beta^{2}}\left[\ln \frac{2 m_{e} c^{2} \gamma^{2} \beta^{2}}{I}-\beta^{2}\right]
$$

Bethe Bloch Equation („low-energy approximation")

- constants:
N_{A} : Avogadro number
m_{e}, r_{e} : electron rest mass, classical electron radius
c: speed of light
- target material properties:
ρ : material density
$\mathrm{A}_{\mathrm{T}}, \mathrm{Z}_{\mathrm{T}}$: atomic mass, nuclear charge
I : mean excitation energy
particle properties:
Z_{p} : charge
β : velocity, with $\quad \gamma^{2}=\frac{1}{1-\beta^{2}}$
Electrons: Bremsstrahlung

Beam Monitors: Physical Processes

- nuclear or elementary particle physics interactions
\rightarrow beam loss monitors, luminosity monitors...

electrons

> simple (point) objects

- interaction cross sections into final states can be calculated precisely

hadrons

$>$ constituent nature (collection of quarks and gluons)

- interaction cross sections not precisely calculable
- interaction of particles with photon beams
\rightarrow laser wire scanners, Compton polarimeters, ...
electrons: Compton scattering
hadrons: laser photo neutralization (H^{-}beam)

Beam Position Monitor (BPM)

Beam Position Monitors

- short version of E-XFEL BPM specification

specified charge	rang あ 末 $\frac{1}{3}$ $\frac{1}{2}$	0.1	nC $\begin{aligned} & \text { ᄃ } \\ & \hline \mathbf{O} \\ & \hline \mathbf{O} \end{aligned}$	$\stackrel{\varrho}{\stackrel{\circ}{2}}$							
		mm	mm		$\mu \mathrm{m}$	$\mu \mathrm{m}$	mm	mm	\%	$\mu \mathrm{m}$	$\mu \mathrm{m}$
Standard BPM	219	40.5	$\begin{aligned} & \hline 200 / \\ & 100 \\ & \hline \end{aligned}$	Button	50	10	± 3.0	± 10	1	10	200
Cold BPM	102	78	170	Button/ Reentrant	50	10	± 3.0	± 10	1	10	300
Cavity BPM Beam Transfer Line	12	40.5	255	Cavity	10	1	± 1.0	± 2	1	1	200
Cavity BPM Undulator	117	10	100	Cavity	1	0.1	± 0.5	± 2	1	0.1	50
IBFB	4	40.5	255	Cavity	1	0.1	± 1.0	± 2	1	0.1	200

\Rightarrow different BPM types to meet different requirements

Comparison of BPM Types

 $=$| BPM Type | Application | Precaution | Advantage | Disadvantage |
| :---: | :---: | :---: | :---: | :---: |
| Shoe-Box | p-synchrotrons heavy-ion accelerators | long bunches $\mathrm{f}_{\mathrm{RF}}<10 \mathrm{MHz}$ | very linear no $x-y$ coupling sensitive | complex mechanics capacitive coupling between plates |
| Button | p-linacs
 all e-accelerators | $\mathrm{f}_{\text {RF }}>10 \mathrm{MHz}$ | simple mechanics | non-linear
 $\mathrm{x}-\mathrm{y}$ coupling
 possible signal deformation |
| Stripline | colliders
 p-linacs
 all e-accelerators | best for $\beta \approx 1$ short bunches | directivity large signal | complex 50Ω matching complex mechanics |
| Cavity | e-linacs (e.g. FELs) | short bunches, special applic. | very sensitive | very complex high frequency |

P. Forck, "Lecture Notes on Beam Instrumentation and Diagnostics", JUAS 2011

Beam Position Monitor

- most common: capacitive pickups
$>$ signal generation via beam electric field
$>$ popular design: button-type pickup
\rightarrow simple, cheap, ...
\rightarrow moderate resolution
- operation principle
> electric field induces image charge on pick-up

LHC button pickup
courtesy: R.Jones (CERN)
\rightarrow pick-up mounted isolated inside vacuum chamber
\rightarrow amount of induced charge depends on distance between beam and pick-up

- button pickup: high pass characteristics

P. Forck, "Lecture Notes on Beam

Instrumentation and Diagnostics", JUAS 2011

BPM Signal Calculation

- Beam Instrumentation System Simulator (B.I.S.S.)
calculation from BPM signals in time- and frequency domain
$>$ study influence of various parameters

BPM Signals

- observation (1): singnals are short with small modulation
\rightarrow single bunch response \rightarrow nsec or sub-nsec pulse signals
$>$ beam position information \rightarrow amplitude modulated on large (common mode) beam intensity signal!

- BPM building blocks

BPM Pickup

> RF device, EM field detection, center of charge
> symmetrically arranged electrodes or resonant structure

Read-out Electronics

> analog signal conditioning
> signal sampling (ADC)
$>$ digital signal processing
> data acquisition and control system interface

courtesy: M. Gasior (CERN)

BPM Signals

- observation (2): nonlinearities \Rightarrow especially BPMs for circular e-accelerators
> synchrotron radiation emission
\rightarrow pickups mounted out of orbit plane
$>$ vacuum chamber not rotational symmetric
$\rightarrow \varepsilon_{\text {hor }} \gg \varepsilon_{\text {vert }} \quad$ (SR emission in hor. plane)
\rightarrow injection oscillations due to off-axis injection (allows intensity accumulation)

courtesy: A.Delfs (DESY)

PETRA-III BPM close to ID
\Rightarrow correction of strong non-linearities in beam position required

Position Reconstruction

- two common monitor geometries
difference in position reconstruction
linac-type storage ring-type

$$
\begin{aligned}
& x=K_{x} \frac{P_{1}-P_{3}}{P_{1}+P_{3}} \\
& y=K_{y} \frac{P_{2}-P_{4}}{P_{2}+P_{4}}
\end{aligned}
$$

$$
\Rightarrow \text { difference-over-sum or } \frac{\Delta}{\Sigma}
$$

- position information
\downarrow requires knowledge of monitor constant $\mathrm{K}_{\mathrm{x}}, \mathrm{K}_{\mathrm{y}}$
\rightarrow rule of thumb (circular duct)

$$
\begin{array}{ll}
K_{x, y}=\frac{R}{2} \frac{\alpha}{\sin \alpha} & \text { linac-type } \\
K_{x, y}=\frac{R}{\sqrt{2}} \frac{\alpha}{\sin \alpha} & \text { storage ring-type }
\end{array}
$$

$$
\mathrm{x}=\mathrm{K}_{\mathrm{x}} \frac{\left(\mathrm{P}_{1}+\mathrm{P}_{4}\right)-\left(\mathrm{P}_{2}+\mathrm{P}_{3}\right)}{\mathrm{P}_{1}+\mathrm{P}_{2}+\mathrm{P}_{3}+\mathrm{P}_{4}}
$$

$$
y=K_{y} \frac{\left(P_{1}+P_{2}\right)-\left(P_{3}+P_{4}\right)}{P_{1}+P_{2}+P_{3}+P_{4}}
$$

OLYMPUS @ DORIS (DESY)

- two-photon exchange in lepton scattering
> compare $\mathrm{e}^{+} \mathrm{p}$ and e-p elastic scattering
R. Milner et al., „The OLYMPUS experiment", Nucl. Instrum. Methods A741 (2014) 1

Monitor Constant Measurement

Tasks: BPMs

- calculate BPM signals using B.I.S.S
get a first impression about BPM signal forms
$\rightarrow \quad$ chamber geometry influence
\rightarrow non-linearities
\rightarrow output impedance
- calculate monitor constants for OLYMPUS BPMs
> use rule-of-thumb formulae for both geometries
$\rightarrow \quad$ compare with simulation results
- measure OLYMPUS BPM monitor constants (both geometries)
- define electrical center of both BPM bodies (origin)
\checkmark perform 1-dim. scan along one axis $\quad \rightarrow$ max. wire position: $\pm 15 \mathrm{~mm}(!!!)$
\rightarrow measure signal amplitudes from each button
$\rightarrow \quad$ calculate Δ / Σ from measured signals
$\rightarrow \quad$ plot Δ / Σ versus wire position and compare with simulation results
- determine monitor constant from slope at origin
- (measure 2-dim. position map)

Transverse Phase Space: Beam Size and Emittance

Accelerator Key Parameters

- light source: spectral brilliance
> measure for phase space density of photon flux

$$
B=\frac{\text { Number of photons }}{[\mathrm{sec}]\left[\mathrm{mm}^{2}\right]\left[\mathrm{mrad}^{2}\right][0.1 \% \text { bandwidth }]}
$$

$>$ user requirement: high brightness
\rightarrow lot of monochromatic photons on sample
> connection to machine parameters

$$
B \propto \frac{\mathrm{~N}_{\gamma}}{\sigma_{x} \sigma_{x^{\prime}} \sigma_{z} \sigma_{z^{\prime}}} \propto \frac{\mathrm{I}}{\varepsilon_{x} \varepsilon_{z}}
$$

- requirements
$>$ design of small emittance machine \rightarrow proper choice of magnet lattice
> preserve small emittance
\rightarrow question of stability
\rightarrow require active feedback systems / careful design considerations
- collider: luminosity
> measure for the collider performance

$$
\dot{N}=L \cdot \sigma
$$

relativistic invariant proportionality factor between cross section σ (property of interaction) and number of interactions per second
$>$ user requirement: high luminosity \rightarrow lot of interactions in reaction channel
> connection to machine parameters

$$
L \propto \frac{I_{1} \cdot I_{2}}{\varepsilon}
$$

for two identical beams with emittances $\varepsilon_{x}=\varepsilon_{z}=\varepsilon$
bunch of particles

> measure small emittance

Transverse Emittance

- projection of phase space volume
> separate horizontal, vertical and longitudinal plane
- accelerator key parameter
> defines luminosity / brilliance
- linear forces
$>$ any particle moves on an ellipse in phase space (x, x ')
ellipse rotates in magnets and shears along drifts
\rightarrow but area is preserved: emittance

$$
\varepsilon=\gamma x^{2}+2 \alpha x x^{\prime}+\beta x^{\prime 2}
$$

($\alpha, \beta, \gamma, \varepsilon$: Courant-Snyder or Twiss parameters)

- transformation along accelerator
$>$ knowledge of the magnet structure (beam optics) \rightarrow transformation from initial (i) to final (f) location
$\rightarrow \quad$ single particle transformation

$$
\binom{x}{x^{\prime}}_{f}=\underbrace{\left(\begin{array}{ll}
R_{11} & R_{12} \\
R_{21} & R_{22}
\end{array}\right)}_{R} \cdot\binom{x}{x^{\prime}}_{i}
$$

$\rightarrow \quad$ transformation of optical functions

$$
\left(\begin{array}{c}
\beta \\
\alpha \\
\gamma
\end{array}\right)_{f}=\left(\begin{array}{ccc}
R_{11}{ }^{2} & -2 R_{11} R_{12} & R_{12}{ }^{2} \\
-R_{11} R_{21} & 1+R_{11} R_{21} & -R_{12} R_{22} \\
R_{21}{ }^{21} & -2 R_{21} R_{22} & R_{22}{ }^{2}
\end{array}\right) \cdot\left(\begin{array}{c}
\beta \\
\alpha \\
\gamma
\end{array}\right)_{i}
$$

Transverse Emittance Ellipse

- propagation along accelerator
> change of ellipse shape and orientation
\rightarrow area is preserved

$$
\varepsilon=\gamma(s) x(s)^{2}+2 \alpha(s) x(s) x^{\prime}(s)+\beta(s) x^{\prime}(s)^{2}
$$

$$
\begin{aligned}
& \alpha(s)=-\frac{\beta^{\prime}(s)}{2} \\
& \gamma(s)=\frac{1+\alpha^{2}(s)}{\beta(s)}
\end{aligned}
$$

$$
x(s)=\sqrt{\varepsilon \beta(s)} \cdot \cos \Psi(s)+\Phi_{-}^{-}
$$

Emittance and Beam Matrix

 GEMEINSCHAFT

- beam matrix

$$
\begin{gathered}
\Sigma=\left(\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right)=\left(\begin{array}{ll}
\left\langle x^{2}\right\rangle & \left\langle x x^{\prime}\right\rangle \\
\left\langle x x^{\prime}\right\rangle & \left\langle x^{\prime 2}\right\rangle
\end{array}\right)=\varepsilon\left(\begin{array}{cc}
\beta & -\alpha \\
-\alpha & \gamma
\end{array}\right) \\
\varepsilon=\sqrt{\operatorname{det} \Sigma}=\sqrt{\Sigma_{11} \cdot \Sigma_{22}-\Sigma_{12}^{2}}
\end{gathered}
$$

> transformation of beam matrix

$$
\Sigma^{1}=\mathrm{R} \Sigma^{0} \mathrm{R}^{T} \quad R=\left(\begin{array}{ll}
R_{11} & R_{12} \\
R_{21} & R_{22}
\end{array}\right)
$$

- via Twiss parameters

$$
\varepsilon=\gamma x^{2}+2 \alpha x x^{\prime}+\beta x^{\prime 2}
$$

- statistical definition
P.M. Lapostolle, IEEE Trans. Nucl. Sci. NS-18, No. 3 (1971) 1101

$$
\varepsilon_{r m s}=\sqrt{\left\langle x^{2}\right\rangle\left\langle x^{\prime 2}\right\rangle-\left\langle x x^{\prime}\right\rangle^{2}}
$$

$2^{\text {nd }}$ moment of beam distribution $\rho(x)$

$$
\left\langle x^{2}\right\rangle=\frac{\int_{-\infty}^{\infty} d x x^{2} \cdot \rho(x)}{\int_{-\infty}^{\infty} d x \rho(x)}
$$

$\Rightarrow \varepsilon_{\mathrm{rms}}$ is measure of spread in phase space
> root-mean-square (rms) of distribution

$$
\sigma_{x}=\left\langle x^{2}\right\rangle^{1 / 2}
$$

$>\varepsilon_{\mathrm{rms}}$ useful definition for non-linear beams
\rightarrow usually restriction to certain range (c.f. 90% of particles instead of $[-\infty,+\infty]$)

Emittance Measurement: Principle

- emittance: projected area of transverse phase space volume
- not directly accessible for beam diagnostics

- measurement schemes
> beam matrix based measurements
\rightarrow determination of beam matrix elements:
- measured quantity
\Rightarrow beam size

$$
\sqrt{\Sigma_{11}}=\sqrt{\left\langle x^{2}\right\rangle}=\sqrt{\varepsilon \beta}
$$

\Rightarrow beam divergence $\sqrt{\Sigma_{22}}=\sqrt{\left\langle x^{\prime 2}\right\rangle}=\sqrt{\varepsilon \gamma}$
divergence measurements seldom in use
\rightarrow restriction to profile measurements
> mapping of phase space
\rightarrow restrict to (infenitesimal) element in space coordinate, convert angles x‘ in position

Circular Accelerators

- emittance diagnostics in circular accelerators
> circular accelerator: periodic with circumference L
\rightarrow one-turn transport matrix: $\mathrm{R}(\mathrm{s}+\mathrm{L})=\mathrm{R}(\mathrm{s})$
\rightarrow Twiss parameters $\alpha(\mathrm{s}), \beta(\mathrm{s}), \gamma(\mathrm{s})$ uniquely defined at each location in ring
> measurement at one location in ring sufficient to determine ε
\rightarrow measured quantity: beam profile / angular distribution
- classification

$$
\begin{array}{lll}
\text { beam spot } & \text { wavefront } & \text { spatial resolving } \\
\text { detector (CCD) }
\end{array}
$$

$>$ imaging
\rightarrow beam size
> interference
\rightarrow beam size

image size

interference pattern
> projection
\rightarrow beam divergence

angular distribution

Beam Matrix based Measurements

- starting point: beam matrix

$$
\Sigma=\left(\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right)=\left(\begin{array}{ll}
\left\langle x^{2}\right\rangle & \left\langle x x^{\prime}\right\rangle \\
\left\langle x x^{\prime}\right\rangle & \left\langle x^{\prime 2}\right\rangle
\end{array}\right)=\varepsilon\left(\begin{array}{cc}
\beta & -\alpha \\
-\alpha & \gamma
\end{array}\right)
$$

- emittance determination
$>$ measurement of $\mathbf{3}$ matrix elements $\boldsymbol{\Sigma}_{11}, \boldsymbol{\Sigma}_{12}, \boldsymbol{\Sigma}_{\mathbf{2 2}}$
$>$ remember: beam matrix Σ depends on location, i.e. $\Sigma(\mathrm{s})$

$$
\varepsilon=\sqrt{\operatorname{det} \Sigma}=\sqrt{\Sigma_{11} \cdot \Sigma_{22}-\Sigma_{12}^{2}}
$$

\rightarrow determination of matrix elements at same location required

- access to matrix elements
$>$ profile monitor determines only $\sigma=\sqrt{\Sigma_{11}}$
> other matrix elements can be inferred from beam profiles taken under various transport conditions
\rightarrow knowledge of transport matrix R required

$$
\Sigma^{b}=R \cdot \Sigma^{a} \cdot R^{T} \quad R=\left(\begin{array}{ll}
R_{11} & R_{12} \\
R_{21} & R_{22}
\end{array}\right)
$$

- measurement of at least 3 profiles for 3 matrix elements

$$
\begin{aligned}
& \Sigma_{11}^{a} \\
& \Sigma_{11}^{b}=R_{11}^{2} \cdot \Sigma_{11}^{a}+2 R_{11} R_{12} \cdot \Sigma_{12}^{a}+R_{12}^{2} \cdot \Sigma_{22}^{a} \\
& \Sigma_{11}^{c}=\bar{R}_{11}^{2} \cdot \Sigma_{11}^{a}+2 \bar{R}_{11} \bar{R}_{12} \cdot \Sigma_{12}^{a}+\bar{R}_{12}^{2} \cdot \Sigma_{22}^{a}
\end{aligned}
$$

> measurement : profiles
$\sigma^{a, b, c}=\sqrt{\Sigma_{11}^{a, b, c}}$
> known: transport optics

$$
R, \bar{R}
$$

> deduced: matrix elements
$\Sigma_{11}^{a}, \Sigma_{12}^{a}, \Sigma_{22}^{a}$
\rightarrow more than 3 profile measurements favourable, data subjected to least-square analysis

Beam Matrix based Measurements

- "quadrupole scan" method
$>$ use of variable quadrupole strengths
\rightarrow change quadrupole settings and measure beam size in profile monitor located downstream

quadrupole transfer matrix

$$
Q=\left(\begin{array}{cc}
1 & 0 \\
\pm 1 / f & 1
\end{array}\right)
$$

drift space transfer matrix

$$
\rightarrow \quad \mathbf{R}=\mathbf{S Q}
$$

$$
S=\left(\begin{array}{ll}
1 & l \\
0 & 1
\end{array}\right)
$$

Beam Matrix based Measurements

- "multi profile monitor" method
> fixed particle beam optics
\rightarrow measure beam sizes using multiple profile monitors at different locations
> example:
emittance measurement setup at FLASH injector (DESY)
courtesy: K. Honkavaara (DESY)
- task

> beam profile measurement

Storage Ring: Profile Measurement

- circular accelerator

$>$ only non- or minimum-invasive diagnostics \rightarrow otherwise beam loss after few turns

- e^{-} / e^{+}ring
> working horse: synchrotron radiation
\rightarrow problem: heat load @ extraction mirror

- hadron ring

> wire scanners: scan of thin wire across the beam
$>$ detect beam-wire interaction as function of wire position

> residual gas monitor:
> residual gas ionization / luminescence

T. Giacomini et al., Proc. BIW 2004, p. 286

Linac or Transport Line: Profiles

- linear machine

$>$ single pass diagnostics \rightarrow interaction with matter \quad (care has to be taken)

- hadron accelerators
> working horse: screen monitors
$\rightarrow \quad$ scintillating light spot intensity corresponds to beam profile
> wire harp
$\rightarrow \quad$ extension of wire scanner

B. Walasek-Höhne et al., IEEE

Trans. Nucl. Sci. 59 (2012) 2307

$$
\sigma=1.44 \mu \mathrm{~m}
$$

G. Kube et al., Proc. IBIC 2015,

Melbourne (Australia), TUPB012

Screen Monitors

- principle
> radiator
\rightarrow scintillator / OTR screen
\rightarrow generation of light spot: intensity distribution reflects
particle beam density (i.e. linear light generation mechanism)
> optical system / CCD
\rightarrow imaging / recording of light spot
$>$ target mover
\rightarrow move screen in / out of particle beam
> illumination
\rightarrow check system performance

B. Walasek-Höhne et al., IEEE Trans. Nucl. Sci. 59 (2012) 2307

- screen monitor setup
$>$ radiator $\rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}: \mathrm{Cr}$ (Chromox) screen
(thickness $1.0 \mathrm{~mm} / 0.5 \mathrm{~mm} / 0.3 \mathrm{~mm}$)
> CCD \rightarrow USB camera
$>$ optics \rightarrow CCTV lens

Size Measurement: Resolution

- fundamental resolution limit
$>$ point observer detecting photons from point emitter

Δx
$\Delta \mathrm{p}_{x}=2 \hbar \mathrm{k} \cdot \sin \vartheta \approx 2 \cdot \frac{h}{2 \pi} \cdot \frac{2 \pi}{\lambda} \cdot \sin \vartheta$
$\mathrm{NA}=\sin \vartheta:$
numerical aperture

$$
\Delta \mathrm{x} \cdot \Delta \mathrm{p}_{x} \approx h \quad \Rightarrow \quad \Delta \mathrm{x} \approx \frac{\lambda}{2 \sin \vartheta}
$$

\square high resolution:
(i) small λ
(ii) high NA

- image of point source

- resolution broadening: additional contributions
> depth of field
$\rightarrow \quad$ mainly for synchrotron radiation based diagnostics
> radius of curvature

Emittance Measurement Test Setup

- emittance of laser beam: "multi-profile monitor" method

- calibration / resolution targets
> check system performance of detector system

Tasks: Emittance Diagnostics

- estimate the image resolution for an optical synchrotron radiation profile monitor
$>$ modern $3^{\text {rd }}$ generation light source:

$$
\mathrm{E}=6 \mathrm{GeV}, \lambda_{\text {obs }}=500 \mathrm{~nm}, \sigma_{\mathrm{y}}=10 \mu \mathrm{~m}
$$

$\rightarrow \quad$ assume „self diffaction", i.e. aperture limitation imposed by radiation angular distribution $(1 / \gamma)$

- derive the single particle transport matrix for a drift space
> assume paraxial approximation

$$
\rightarrow \quad \sin \left(x^{\prime}\right) \approx x^{\prime}
$$

- calculate the evolution of the beam size after a drift space
\downarrow use the beam matrix transformation together with the transport matrix R for a drift space
- investigate the performance of the CCD
$>$ spatial calibration \rightarrow dot grid target (0.5 mm spacing)
\rightarrow resolution \rightarrow Siemens star, USAF 1951 target
- measure the emittance of the laser beam
$>$ measure spot sizes for different distances of the lens
> analyse the horizontal profiles as function of the lens position
\triangleright calculate the laser beam emittance $\quad \rightarrow \quad$ use the simplest way with only 2 values
> (repeat with a different scintillator thickness)

