Excellence in Detectors and Instrumentation Technologies INFN - Laboratori Nazionali di Frascati, Italy October 20-29, 2015

Accelerator Laboratory: Introduction to Beam Diagnostics and Instrumentation

Gero Kube, Kay Wittenburg DESY / MDI

- Introduction
- Beam Position Monitor
- Transverse Emittance / Beam Profile

Diagnostics and Instrumentation

instrumentation

catchword for all technologies needed to produce primary measurements of

beam parameters

diagnostics

- making use of these instruments in order to
 - operate the accelerators
 - \rightarrow orbit control
 - improve the accelerator performance
 - \rightarrow feedback, emittance preservation
 - deduce additional beam parameters or performance indicators of the machine by further data processing
 - \rightarrow chromaticity measurements, betatron matching, ... (examples for circular accelerator)
 - detect equipment faults

H. Schmickler, Introduction to Beam Diagnostics, CAS 2005

outline

Beam Instrumentation for...

• beam position

- orbit, lattice parameters, tune, chromaticity, feedback,...
- beam intensity
 - dc & bunch current, coasting beam, lifetime, efficiencies,...
- beam profile
 - longitudinal and transverse distributions, emittances,...
- beam loss
 - identify position of losses, prevent damage of components,..
- beam energy
 - mainly required by users,...
- Iuminosity (collider)
 - key parameter, collision optimization...

and even more: charge states, mass numbers, timing...

- influence of particle electromagnetic field
 - <u>non-propagating fields</u>, i.e. electro-magnetic influence of

moving charge on environment

- \rightarrow beam transformers, pick-ups, ...
- propagating fields, i.e. emission of photons
 - \rightarrow synchrotron radiation monitors, (OTR), ...

particle electromagnetic field

relativistic contracion characterized by Lorentz factor

2

$$\gamma = E / m_0 c$$

E : total energy $m_0 c^2$: rest mass energy

proton:
$$m_p c^2 = 938.272 \text{ MeV}$$

electron: $m_e c^2 = 0.511 \text{ MeV}$

non-propagating field

transverse electrical field components

Gero Kube & Kay Wittenburg, DESY / MDI

EDIT 2015, Frascati (Italy), 23./27.October 2015

- Coulomb interaction of charged particle penetrating matter
 - \rightarrow viewing screens, residual gas monitors, ...

Gero Kube & Kay Wittenburg, DESY / MDI

EDIT 2015, Frascati (Italy), 23./27.October 2015

- nuclear or elementary particle physics interactions
 - \rightarrow beam loss monitors, luminosity monitors...

electrons

- simple (point) objects
- interaction cross sections into final states can be calculated precisely

hadrons

- constituent nature (collection of quarks and gluons)
- interaction cross sections not precisely calculable

interaction of particles with photon beams

 \rightarrow laser wire scanners, Compton polarimeters, ...

electrons: Compton scattering

$$\mathcal{W} \to H^{-} \longrightarrow H^{0} + e$$

applied for high power H⁻ beam profile diagnostics

Excellence in Detectors and Instrumentation Technologies INFN - Laboratori Nazionali di Frascati, Italy October 20-29, 2015

FRASCATI - OCT.20-29

Beam Position Monitor (BPM)

Beam Position Monitors

short version of E-XFEL BPM specification

specified charge	range	: 0.1 – 1	nC		h RMS)	ed (RMS)		lange	×	nch	nent MS)
	Number	Beam Pipe	Length	Type	Single Buncl Resolution (I	Train Averag Resolution(Optimum Resolution Range	Relaxed Resolution F	x/y Crosstall	Bunch to Bu Crosstalk	Trans. Aligni Tolerance (R
		mm	mm		μm	μm	mm	mm	%	μm	μm
Standard BPM	219	40.5	200/ 100	Button	50	10	± 3.0	± 10	1	10	200
Cold BPM	102	78	170	Button/ Re- entrant	50	10	± 3.0	± 10	1	10	300
Cavity BPM Beam Transfer Line	12	40.5	255	Cavity	10	1	± 1.0	±2	1	1	200
Cavity BPM Undulator	117	10	100	Cavity	1	0.1	± 0.5	±2	1	0.1	50
IBFB	4	40.5	255	Cavity	1	0.1	± 1.0	± 2	1	0.1	200

different BPM types to meet different requirements

courtesy: D.Nölle (DESY)

Comparison of BPM Types

BPM Type	Application	Precaution	Advantage	Disadvantage
Shoe-Box	p-synchrotrons heavy-ion accelerators	long bunches $f_{RF} < 10 \text{ MHz}$	very linear no x-y coupling sensitive	complex mechanics capacitive coupling between plates
Button	p-linacs all e-accelerators	f_{RF} > 10 MHz	simple mechanics	non-linear x-y coupling possible signal deformation
Stripline	colliders p-linacs all e-accelerators	best for $\beta \approx 1$ short bunches	directivity large signal	complex 50 Ω matching complex mechanics
Cavity	e-linacs (e.g. FELs)	short bunches, special applic.	very sensitive	very complex high frequency

P. Forck, "Lecture Notes on Beam Instrumentation and Diagnostics", JUAS 2011

signal generation via beam electric field popular design: **button-type pickup** \rightarrow simple, cheap, ...

most common: capacitive pickups

Beam Position Monitor

 \rightarrow moderate resolution

operation principle

I_{im}(t)

beam pipe

pick up

- electric field induces image charge on pick-up
 - \rightarrow pick-up mounted isolated inside vacuum chamber
 - \rightarrow amount of induced charge depends on distance between beam and pick-up

equivalent circuit

 Z_{t}

button pickup: high pass characteristics

 $U_{im}(t)$

ground

beam^(t)

I_{im}(t)

R

courtesy: R.Jones (CERN)

LHC button pickup

75 e. 50 phase 25 10 |Z_t| [Ω] 10° ransfer imp. 10^{-1} -2 10 -high impedance 1 M Ω 10^{-3} low impedance 50 Ω 10 10³ 10 10 10 10 -10 frequency f [MHz]

not well suited for long bunches

U_{im}(t)

ground

- \rightarrow especially: low energy hadron beams, i.e. heavy ion beams
- \rightarrow small coupling between pickup and bunch

BPM Signal Calculation

- Beam Instrumentation System Simulator (B.I.S.S.)
 - > calculation from BPM signals in time- and frequency domain
 - study influence of various parameters

BPM Signals

observation (1): singnals are short with small modulation

data acquisition and control system interface

courtesy: M. Wendt (CERN)

BPM Signals

observation (2): nonlinearities

especially BPMs for circular e-accelerators

- synchrotron radiation emission
 - \rightarrow pickups mounted **out of orbit plane**
- vacuum chamber not rotational symmetric
 - $\rightarrow \epsilon_{hor} >> \epsilon_{vert}$ (SR emission in hor. plane)
 - → injection oscillations due to off-axis injection (allows intensity accumulation)

courtesy: A.Delfs (DESY)

PETRA-III BPM close to ID

correction of strong non-linearities in beam position required

Position Reconstruction

- two common monitor geometries
 - difference in position reconstruction

linac-type

difference-over-sum or

<u>-</u>Σ

GEMEINSCHAFT

position information

- requires knowledge of monitor constant K_x, K_y
 - \rightarrow rule of thumb (circular duct)

$$K_{x,y} = \frac{R}{2} \frac{\alpha}{\sin \alpha}$$
$$K_{x,y} = \frac{R}{\sqrt{2}} \frac{\alpha}{\sin \alpha}$$

linac-type

storage ring-type

storage ring-type

Gero Kube & Kay Wittenburg, DESY / MDI

OLYMPUS @ DORIS (DESY)

• two-photon exchange in lepton scattering

compare e⁺p and e⁻p elastic scattering

R. Milner et al., "The OLYMPUS experiment", Nucl. Instrum. Methods A741 (2014) 1

Monitor Constant Measurement

BPM test stand

U. Schneekloth et al., Proc. IBIC 2014, Monterey (Ca), USA, (2014) 324

Tasks: BPMs

- calculate BPM signals using B.I.S.S
 - > get a first impression about BPM signal forms
 - \rightarrow chamber geometry influence
 - \rightarrow non-linearities
 - \rightarrow output impedance

calculate monitor constants for OLYMPUS BPMs

- > use rule-of-thumb formulae for both geometries
 - \rightarrow compare with simulation results

measure OLYMPUS BPM monitor constants (both geometries)

- define electrical center of both BPM bodies (origin)
- → perform 1-dim. scan along one axis \rightarrow max. wire position: ± 15 mm (!!!)
 - \rightarrow measure signal amplitudes from each button
 - \rightarrow calculate $\Delta \Sigma$ from measured signals
 - \rightarrow plot Δ/Σ versus wire position and compare with simulation results
- determine monitor constant from slope at origin
- (measure 2-dim. position map)

Excellence in Detectors and Instrumentation Technologies INFN - Laboratori Nazionali di Frascati, Italy October 20-29, 2015

Transverse Phase Space: Beam Size and Emittance

Accelerator Key Parameters

• light source: spectral brilliance

> measure for phase space density of photon flux

 $B = \frac{\text{Number of photons}}{[\text{sec}][\text{mm}^2][\text{mrad}^2][0.1\% \text{ bandwidth}]}$

- user requirement: high brightness
 - \rightarrow lot of monochromatic photons on sample
- connection to machine parameters

$$B \propto \frac{N_{\gamma}}{\sigma_x \sigma_{x'} \sigma_z \sigma_{z'}} \propto \frac{I}{\varepsilon_x \varepsilon_z}$$

• requirements

- > design of small emittance machine
 - \rightarrow proper choice of magnet lattice
- preserve small emittance
 - \rightarrow question of stability
 - \rightarrow require active feedback systems / careful design considerations

- collider: luminosity
 - > measure for the collider performance

$$\dot{N} = L \cdot \sigma$$

relativistic invariant proportionality factor between cross section σ (property of interaction) and number of interactions per second

- user requirement: high luminosity
 - \rightarrow lot of interactions in reaction channel
- connection to machine parameters

for two identical beams with emittances $\varepsilon_x = \varepsilon_z = \varepsilon$

bunch of particles

low emittance beam

high emittance beam

measure small emittance

Transverse Emittance

- projection of phase space volume
 - > separate horizontal, vertical and longitudinal plane
- accelerator key parameter
 - defines luminosity / brilliance

Iinear forces

- any particle moves on an ellipse in phase
 space (x,x')
- > ellipse rotates in magnets and shears along drifts
 - \rightarrow but area is preserved: **emittance**

transformation along accelerator

- knowledge of the magnet structure (beam optics) \rightarrow
 - \rightarrow single particle transformation

$$\begin{pmatrix} x \\ x' \end{pmatrix}_{f} = \begin{pmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{pmatrix} \cdot \begin{pmatrix} x \\ x' \end{pmatrix}_{i}$$

(α , β , γ , ϵ : Courant-Snyder or Twiss parameters)

- transformation from initial (i) to final (f) location
 - \rightarrow transformation of optical functions

$$\begin{pmatrix} \beta \\ \alpha \\ \gamma \end{pmatrix}_{f} = \begin{pmatrix} R_{11}^{2} & -2R_{11}R_{12} & R_{12}^{2} \\ -R_{11}R_{21} & 1+R_{12}R_{21} & -R_{12}R_{22} \\ R_{21}^{2} & -2R_{21}R_{22} & R_{22}^{2} \end{pmatrix} \cdot \begin{pmatrix} \beta \\ \alpha \\ \gamma \end{pmatrix}_{i}$$

EDIT 2015, Frascati (Italy), 23./27.October 2015

Gero Kube & Kay Wittenburg, DESY / MDI

Transverse Emittance Ellipse

Emittance and Beam Matrix

beam matrix

$$\Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix} = \begin{pmatrix} \langle x^2 \rangle & \langle xx' \rangle \\ \langle xx' \rangle & \langle x'^2 \rangle \end{pmatrix} = \varepsilon \begin{pmatrix} \beta & -\alpha \\ -\alpha & \gamma \end{pmatrix}$$

$$\varepsilon = \sqrt{\det \Sigma} = \sqrt{\Sigma_{11} \cdot \Sigma_{22} - \Sigma_{12}^2}$$

transformation of beam matrix

$$\Sigma^{1} = \mathbf{R}\Sigma^{0}\mathbf{R}^{T} \qquad R = \begin{pmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{pmatrix}$$

• via Twiss parameters

$$\varepsilon = \gamma x^2 + 2\alpha x x' + \beta x'^2$$

statistical definition

P.M. Lapostolle, IEEE Trans. Nucl. Sci. NS-18, No.3 (1971) 1101

$$\varepsilon_{rms} = \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2}$$

 2^{nd} moment of beam distribution $\rho(x)$

$$\left\langle x^{2}\right\rangle = \frac{\int_{-\infty}^{\infty} \mathrm{d}x \, x^{2} \cdot \rho(x)}{\int_{-\infty}^{\infty} \mathrm{d}x \, \rho(x)}$$

- $\blacktriangleright ~\epsilon_{rms}$ is measure of spread in phase space
- > root-mean-square (rms) of distribution $\sigma_x = \left\langle x^2 \right\rangle^{1/2}$
- $\epsilon_{\rm rms}$ useful definition for non-linear beams
 - \rightarrow usually restriction to certain range

(c.f. 90% of particles instead of $[-\infty, +\infty]$)

Emittance Measurement: Principle

- emittance: projected area of transverse phase space volume
- not directly accessible for beam diagnostics

- measured quantity
 - beam size

$$\sqrt{\Sigma_{11}} = \sqrt{\left\langle x^2 \right\rangle} = \sqrt{\varepsilon \,\beta}$$

beam divergence

$$\sqrt{\Sigma_{22}} = \sqrt{\left\langle x'^2 \right\rangle} = \sqrt{\varepsilon \gamma}$$

- divergence measurements seldom in use
 - → restriction to profile measurements

$$\varepsilon = \sqrt{\det \Sigma} = \sqrt{\Sigma_{11} \cdot \Sigma_{22} - \Sigma_{12}^2}$$

mapping of phase space.

measurement schemes

beam matrix based measurements

 \rightarrow determination of beam matrix elements:

 \rightarrow restrict to (infenitesimal) element in space coordinate, convert angles x' in position

Circular Accelerators

Gero Kube & Kay Wittenburg, DESY / MDI

EDIT 2015, Frascati (Italy), 23./27.October 2015

Beam Matrix based Measurements

• starting point: beam matrix

• emittance determination

- > measurement of **3** matrix elements Σ_{11} , Σ_{12} , Σ_{22}
- **remember:** beam matrix Σ depends on location, i.e. $\Sigma(s)$
 - \rightarrow determination of matrix elements at same location required

access to matrix elements

- > profile monitor determines only $\sigma = \sqrt{\Sigma_{11}}$
- other matrix elements can be inferred from beam profiles taken under various transport conditions
 - \rightarrow knowledge of transport matrix R required

 $\Sigma_{11}^{c} = \overline{R}_{11}^{2} \cdot \Sigma_{11}^{a} + 2\overline{R}_{11}\overline{R}_{12} \cdot \Sigma_{12}^{a} + \overline{R}_{12}^{2} \cdot \Sigma_{22}^{a}$

more than 3 profile measurements favourable, data subjected to least-square analysis

- **known:** transport optics
 - > **deduced:** matrix elements

 $\Sigma^b = \boldsymbol{R} \cdot \Sigma^a \cdot \boldsymbol{R}^T$

 $\sigma^{a,b,c} = \sqrt{\Sigma_{11}^{a,b,c}}$ R, \overline{R}

 $R = \begin{pmatrix} R_{11} & R_{12} \\ R_{21} & R \end{pmatrix}$

 $\Sigma_{11}^{a}, \Sigma_{12}^{a}, \Sigma_{22}^{a}$

 $\varepsilon = \sqrt{\det \Sigma} = \sqrt{\Sigma_{11} \cdot \Sigma_{22} - \Sigma_{12}^2}$

Beam Matrix based Measurements

• "quadrupole scan" method

- use of variable quadrupole strengths
 - \rightarrow change quadrupole settings and measure beam size in profile monitor located downstream

GEMEINSCHAFT

Beam Matrix based Measurements

"multi profile monitor" method

- Fixed particle beam optics
 - \rightarrow measure beam sizes using multiple profile monitors at different locations

> example:

emittance measurement setup at FLASH injector (DESY)

courtesy: K. Honkavaara (DESY)

• task

beam profile measurement

Gero Kube & Kay Wittenburg, DESY / MDI

EDIT 2015, Frascati (Italy), 23./27.October 2015

Storage Ring: Profile Measurement

HERA

E = 27.6 GeV

circular accelerator

- only non- or minimum-invasive diagnostics \rightarrow
- e⁻/e⁺ ring
 - working horse: synchrotron radiation
 - problem: heat load @ extraction mirror
- hadron ring 0
 - wire scanners: scan of thin wire across the beam
 - detect beam-wire interaction as function of wire position

extraction mirror

> interference filter λ=450 nm

> > density filters

polarization

lens

f=25mm

Уm

achromat

f=1000mm

alignmen

mirror

T. Giacomini et al., Proc. BIW 2004, p.286

 $T_{max} = 1200^{\circ}C$

CCD camera

otherwise beam loss after few turns

HERA e SyLi monitor

 $\rho = 604.8 \text{ m}$

ē

Linac or Transport Line: Profiles

linear machine ٠

- single pass diagnostics interaction with matter
- hadron accelerators
 - working horse: screen monitors
 - scintillating light spot intensity corresponds to beam profile
 - wire harp
 - extension of wire scanner

electron accelerators

screen monitors

- lower resolution (?)
- working horse: OTR monitors

Gero Kube & Kay Wittenburg, DESY / MDI

even potential for sub-micron beams

0.7 intensity / a.u. ⁹⁰⁰ 0.3 0.2 -40 -30 -20 0 10 20 30 y / μm

0.8

(care has to be taken)

B. Walasek-Höhne et al., IEEE Trans. Nucl. Sci. 59 (2012) 2307

G. Kube et al., Proc. IBIC 2015, Melbourne (Australia), TUPB012

Screen Monitors

• principle

- radiator
 - \rightarrow scintillator / OTR screen
 - → generation of light spot: intensity distribution reflects particle beam density (i.e. linear light generation mechanism)
- > optical system / CCD
 - \rightarrow imaging / recording of light spot
- target mover
 - \rightarrow move screen in / out of particle beam
- illumination
 - \rightarrow check system performance

B. Walasek-Höhne et al., IEEE Trans. Nucl. Sci. 59 (2012) 2307

screen monitor setup

→ radiator → Al_2O_3 :Cr (Chromox) screen

(thickness 1.0 mm / 0.5 mm / 0.3 mm)

- $\rightarrow \text{ CCD } \rightarrow \text{ USB camera}$
- \rightarrow optics \rightarrow CCTV lens

_____ /

GEMEINSCHAF

Gero Kube & Kay Wittenburg, DESY / MDI

Size Measurement: Resolution

• fundamental resolution limit

- resolution broadening: additional contributions
- depth of field

 \rightarrow mainly for synchrotron radiation based diagnostics

radius of curvature

Gero Kube & Kay Wittenburg, DESY / MDI

Emittance Measurement Test Setup

emittance of laser beam: "multi-profile monitor" method

• calibration / resolution targets

check system performance of detector system

Tasks: Emittance Diagnostics

- estimate the image resolution for an optical synchrotron radiation profile monitor
 - > modern 3rd generation light source: $E = 6 \text{ GeV}, \lambda_{obs} = 500 \text{ nm}, \sigma_y = 10 \mu \text{m}$
 - \rightarrow assume "self diffaction", i.e. aperture limitation imposed by radiation angular distribution (1/ γ)
- derive the single particle transport matrix for a drift space
 - > assume paraxial approximation

 \rightarrow sin(x') \approx x'

- calculate the evolution of the beam size after a drift space
 - > use the beam matrix transformation together with the transport matrix R for a drift space

investigate the performance of the CCD

- > spatial calibration \rightarrow dot grid target (0.5 mm spacing)
- > resolution \rightarrow Siemens star, USAF 1951 target

measure the emittance of the laser beam

- > measure spot sizes for different distances of the lens
- > analyse the horizontal profiles as function of the lens position
- \rightarrow calculate the laser beam emittance \rightarrow use the simplest way with only 2 values
- (repeat with a different scintillator thickness)