

SiPM a short introduction

D. BADONI UNIVERSITY OF TOR VERGATA

- Photon crossing silicon slice can transfer its energy to a valence electron generating an electron-hole pair
- The photon absorption length is function of the photon wavelength (or energy)
- Silicon is a good photo detector material for 400 nm < λ < 800 nm (above 1000 nm the silicon detector would be too bulky, below 350 nm the silicon would be too thin)

- Diode reverse biased \rightarrow depletion region
- Electrons-holes generated by absorbed photons results in a current (electrons \rightarrow n-type, holes \rightarrow p-type)
- Different behavior according to the doping profile and applied voltage

PHOTODIODE (PIN DIODE)

- P(I)N type
- P layer < I µ
- High QE (80% @ λ= 700 nm)
- Gain=1

AVALANCHE PHOTODIODE (APD)

- High reverse bias voltage (few hundred of volt)
- Special doping profile \rightarrow high internal Field (> 10⁵ V/cm)
 - ightarrow avalanche multiplication
- Typical gain \approx 100
- Gain fluctuations due to avalanche process
- High sensitivity on temp and bias voltage ($\Delta G \approx 3\%/V \Delta G \approx 2.5\%/K$)

- High electric field (> 5×10^5 V/cm) in the depletion region accelerates charge carriers
- Charge carriers acquire enough kinetic energy to create secondary charge pairs (impact ionization process)
- Single photoelectron can generate self-sustaining cascade through the silicon
- The original photoelectron is amplified into a current flow
- Because the analogy of ionization discharge in gases (Geiger Muller Tube) the process is called Geiger discharge

- p-n region designed to sustain reverse bias besides his nominal breakdown voltage
- Flowing current is stopped through a passive quencing circuit (resistors)

- A single photodiode acts as a photon-triggered switch
- The photodiode can not provide proportional magnitude information (i.e. if 1 or more photons hit the same cell produce the same signal)

- To mitigate the lack of proportionality an array of optical isolated Geiger-mode photodiodes has been built each one with his own quencing resistor
- The number of photodiodes range from 100 and 1000 per mm²
- The signals of all photodiodes are then summed

- Matrix of Nmicro-cells ("pixels") in parallel, connected to a common output node
- Each micro-cell: GM-APD+R_{OUENCING}
- V.M. Golovin and A.Sadygov (Russian patents 1996-2002)

A single GM-APD do not produce information about the light intensity. In a SiPM the output charge is proportional to the number of triggered cells or, assuming a CONVERSION EFFICIENCY = I, to the number of photons hitting different cells.

GAIN: number of carriers produced by an absorbed photon. Collected charge correspond to the area of the output signal and can be estimated according to the circuit element and bias

$$I_{MAX} \cdot \frac{\tau_Q}{q} = \frac{\left(V_{BIAS} - V_{BD}\right)}{R_Q} \cdot \frac{\tau_Q}{q} = \frac{\left(V_{BIAS} - V_{BD}\right) \cdot C_D}{q}$$

- V_{BIAS} = Supply voltage
- V_{BD} = Breakdown Voltage
- C_D = Device Capacitance
- $R_Q = Quencing resistor$

EDIT 2015 ERNATIONAL SCHOOL FRASCATI- OCT.2027 SIPM NOISE & PHOTO DETECTION EFFICIENCY (PDE)

NOISE

- **Primary dark count**: current pulses triggered by non-photogenerated carriers (main source of dark carriers: thermal generation in the depleted region)
- After-pulsing: secondary current pulse caused by a carrier trapped during the primary avalanche and released after a certain time
- Optical cross-talk: excitation of neighboring cells due to photoemission during avalanche discharges

PDE: $N_{PULSES}/N_{PHOTONS}$ = QE x A_{TP} x FF

•QE = Quantum Efficiency \approx 1 in the blue-green region

• A_{TP} = Geiger-APD Avalanche Trigger Probability > 0.95 when (V_{BIAS} - V_{BD})/VBIAS > 0.15 •FF = Fill Factor = 0.2 - 0.8

Producer	SiPM ID	No. µcells	µcell size (µm)	$\varepsilon_{ m geom}$ (%)
Photonique	SSPM-0701-BG	556	43 × 43	70
FBK-irst	W20-B10-T3V2PD/I run	625	40×40	20
FBK-irst	W3-B3-T6V1PD/II run	625	40×40	16
SensL	SPM-20	848	29×32	43
SensL	SPM-35	400	44×47	59
SensL	SPM-50	216	59 × 62	68
НРК	S10362-11-25	1600	25×25	31
НРК	S10362-11-50	400	50×50	61.6
НРК	S10362-11-100	100	100×100	78.5

- Metal lines connecting the cells, poly-silicon resistors, thrences and implantation profile reduce the sensitive area
- Fill Factor increase with increasing cell size (up to 70/80%)

ТҮРЕ	GAIN	MIN DETECT SIGNAL (PE)	BANDWIDTH (order of)	MAX SIZE (order of)
PIN	NO	200-300	100 kHz	10 cm ²
APD	LINEAR (50-200)	10-20	100 MHz	2.5 cm ²
SIPM	GEIGER (10 ⁵ -10 ⁶)	1	100 MHz	< 1 cm ²

SiPM PROS

- High photo detection efficiency
- High gain $(10^5 10^6)$
- Single photo-detection sensitivity
- Fast (≈ 1 ns rise time)
- Good time resolution (< 100 ps)
- Lov bias voltages (< 100 V)
- B field insensitivity

SiPM CONS

- Limited linearity
- Dark count
- Surface Area
- Temperature dependence

Multi-Pixel Photon Counter

Structure

Parameters	Symbol	S12825-050C	S12825-050P	Unit
Effective photosensitive area	-	1.3 x 1.3		mm ²
Pixel pitch	-	5	0	μm
Number of pixels / channel	-	667		-
Geometrical fill factor	-	62		%
Package	-	Ceramic	Surface mount type	-
Window	-	Silicone resin	Epoxy resin	-
Window refractive index	-	1.41	1.55	-

Multi-Pixel Photon Counter

Electrical and optical characteristics (Typ. Ta=25 deg C, Vover=2.6 ^{*1} Unless otherwise noted)

Parameters		Symbol	S12825-050C, S12825-050P	Unit
Spectral response range		λ	320 to 900	nm
Peak sensitivity wavelength		λр	450	nm
Photon detection efficiency at λp $^{^{*4}}$		PDE	35	%
Dark count	Тур.		170	kcps
Dark count	Max	-	350	kcps
Terminal capacitance		Ct	60	pF
Gain ^{*5}		М	1.25x10 ⁶	
Breakdown voltage		VBR	65±10V	
Recommended operating voltage ^{*6}		Vop	V _{BR} +2.6	V
Temperature coefficient of recommended reverse voltage		ΔTVop	60	mV/ ⁰C

Multi-Pixel Photon Counter

Operation voltage dependence

PDE: measured at λ =408nm (not including cross talk and after pulse)

SI 8825 HAMAMATSU PEAK SENSITIVITY vs EJ200 PEAK EMISSION SPECTRUM

- An Introduction to the Silicon Photomultiplier Sense Light technical note
- Studies of GM-APD (SiPM) properties workshop on fast cherenkov detectors photon detection, may 11-13, 2009, Giessen, Germany
- Silicon Detectors Photo Detectors P. Fischer, ziti, Uni Heidelberg, Seite, Heidelberg
- SiPM: feature and applications Giulio Saracino University of Naples Federico II