LHC Physics and Detectors

ETH Institute for Particle Physics

Outline:

Our milestones:

1. Why do ATLAS and CMS look like they look like today?

2. Some highlights, achievements

Our milestones:

- Why do ATLAS and CMS look like they look like today?
 A bit of "history"...
- 2. Some highlights, achievements

Variables used in pp collisions

 $p_{T} = p \sin\theta \qquad p_{T}$

Transverse momentum

(in the plane perpendicular to the beam)

Rapidity
$$y = \frac{1}{2} \ln \left(\frac{E + p_L}{E - p_L} \right)$$

(Pseudo)-Rapidity
$$\eta = -\ln \tan \frac{\theta}{2}$$

 $\eta = -1.0$
 $\eta = -1.0$
 $\eta = -2.5$
 $\eta = -2.5$
 $\eta = -5.0$
 $\eta = -2.5$
 $\eta = -2.5$

ETH Institute for Particle Physics

How to design your detector

pp-Interactions at the LHC

Most of the focus: hard scattering

$$d\sigma(h_1h_2 \to cd) = \int_0^1 dx_1 dx_2 \sum_{a,b} f_{a/h_1}(x_1,\mu_F^2) f_{b/h_2}(x_2,\mu_F^2) d\hat{\sigma}^{(ab\to cd)}(Q^2,\mu_F^2)$$

Hard Scattering = processes with large momentum transfer (Q^2)

Represents only a tiny fraction of the total inelastic pp cross section (~ 70-80 mb)

eg. $\sigma(pp \rightarrow W+X) \sim 150 \text{ nb} \sim 2 \cdot 10^{-6} \sigma_{tot}(pp)$

Expected Physics was ...

- Inelastic low-p⊤ pp collisions
- Most processes are due to soft and semi-soft interactions between incoming protons
 - particles in the final state have large longitudinal, but small transverse momentum -> small momentum transfer:

Low-p_T inelastic pp-collisions: "Minimum Bias events" Parameters (multiplicity etc) poorly known! Important for tuning MC simulations, and understanding of Pile-Up effects

several hundreds of MeV

G. Dissertori

ETH Institute for Particle Physics

The impact on the detector design

$$\frac{d^3p}{2E} = \frac{\pi}{2} \frac{dp_T^2 dy}{1}$$

- for low-mass particles (eg. pions) : "flat" in (pseudo)-rapidity
- in order to collect most of them (also to ensure hermeticity, eg. for E_{Tmiss}): need detector up to $y_{\text{max}} \approx 5$
- particle density:
 ~ 4 6 charged particles (pions) plus ~ 2 - 3 neutrals (π⁰) per unit of pseudorapidity in the central detector region
- uniformly distributed in φ

```
\langle p_T \rangle \approx 500 - 600 \,\mathrm{MeV}
```

 minimize too many "curling" tracks which do not reach the calorimeter: tracker/calo boundary at about
 L ~ 1.2m for B = 4T

By the way...

I first results on this at 13 TeV:

Expected Physics was ... (2)

- Huge cross section for b-quark production (study CP viol., flavour problem)
- about 0.5 mb (!) at 14 TeV
- mostly gluon fusion, very asymmetric initial momenta, thus strongly boosted final state
 - b-hadrons with ~ 80 GeV ==> 7mm mean decay distance

- no need for full "4PI" coverage
- just built a "forward spectrometer"
- need: very good vertex detector and particle identification (to reconstruct b-hadrons)

ETH Institute for Particle Physics

Expected Physics was ...

Measure Jet cross sections

(3)

Going fast beyond the TEVATRON reach

- requires good understanding of jets (algorithms, production, jet energy scale), PDFs, pile-up, underlying event, ...
- Thus : good calorimetry!!
- Later came: the power of particle flow

ETH Institute for Particle Physics

Expected Physics was (4)

The Electroweak Sector

- test (re-establish the SM) and then go beyond
- most SM cross sections are significantly higher than at the TEVATRON
 - eg. 100x larger top-pair production cross section
 - the LHC is a top, b, W, Z, ..., Higgs, ... factory

Important: Concentrate on final states with high-p_T and isolated Ieptons and photons (+ jets)

Otherwise overwhelmed by QCD jet background!!

The benchmarks were ...

- Some benchmark processes of the early days, which influenced certain design parameters:
 - Basic processes relevant for studying electro-weak symmetry breaking (as seen in early days):

All cross sections (times BR) of order 1 - 100 fb : determines needed luminosities for sizeable statistics

Production of heavy states

Heavy particles are produced "more centrally"

$$\hat{s} = x_1 x_2 s = M^2 \qquad x_1 \approx x_2 \to x_{1,2} = \frac{M}{\sqrt{s}}$$

$$E = \frac{\sqrt{s}}{2}(x_1 + x_2) \qquad p_L = \frac{\sqrt{s}}{2}(x_1 - x_2)$$

$$y = \frac{1}{2} \ln \frac{E + p_L}{E - p_L} \quad \Rightarrow \quad e^y = \sqrt{\frac{x_1}{x_2}} \Rightarrow y \quad \to \quad 0 \text{ for } x_1 \approx x_2$$

$$x_{1,2} = \frac{M}{\sqrt{s}} e^{\pm y}$$

 Thus important to concentrate on precision tracking/calorimetry in area of approx. |y| < 2.5

Detector requirements

- Good measurement of leptons
 (e, μ) and photons with large
 transverse momentum p_T
 - electromagnetic calorimetry, muon systems
- Good jet reconstruction
 - good resolution, absolute energy measurement
- Good measurement of missing transverse energy (ET miss)
 and
- energy measurements in the forward regions
 - thus, hermetic detector and
 - calorimeter coverage down to rapidity ~ 5

- b-physics
- top physics
- Higgs couplings to b and tau

Examples of detector performance requirements

Typical detector acceptance

- Precision tracking and lepton reconstruction up to rap~2.5
 - p_T thresholds for tracks ~ 100 MeV, for leptons 10-20 GeV
- **Jet and MET** reconstruction: include detectors up to rap~4.5-5
 - p⊤ thresholds for jets ~30 GeV, if tracking-based jets ~15 GeV

How to design your detector

The LHC parameters

- Sessive by LEP tunnel parameters (Radius) and superconducting magnets technologies
- Was considerably lower than SSC (20 TeV / beam)

- ✤ by some considered to "must be 10x SSC" in order to compensate lower E_{CM}
- F Bunch spacing = 25 ns (was 50 ns during the first 3 years)
- relevant cross sections for testing of EWK symmetry breaking of order 1 100 fb⁻¹
- Running time per year T ~ 10⁷ secs (don't forget efficiency factors....)

for
$$\mathcal{L} = 10^{34} / \text{cm}^2 / \text{sec} = 10^{-5} \, \text{fb}^{-1} / \text{sec}$$

 $N = (\mathcal{L} \cdot T) \sigma \Rightarrow 100 \text{ events per year for } \sigma = 1 \text{ fb}$

- Fotal rate of inelastic events $R = \sigma_{\text{inel}} \mathcal{L} \approx (100 \,\text{mb}) (10^7 \,\text{mb}^{-1}/\text{sec}) = 10^9 \,\text{events/sec}$
- Number of inelast. events per bunch crossing = 10⁹/sec * 25 10⁻⁹ sec = 25 (pile-up)!
- Number of chg. particles per bunch x-ing : 25 * N(pions)/rap * (2 y_{max}) >~ 1000 !!
- Thus have an issue with radiation levels! (and pile up ...)

Detector requirements

- High granularity, fast readout, radiation hardness
 - minimize pile-up particles in same detector element
 - many channels
 eg. 100 million pixels,
 200'000 cells in electromagnetic calorimeter
 - 🖗 cost !
 - 20-50 ns response time for electronics !
 - in pixel detector (forward calorimeters) :
 up to 10¹⁵⁻¹⁶ n/cm² over
 10 years of LHC operations

How to design your detector

Magnet Systems

Among the most important design choices

fixes many other parameters/sizes

Example of CMS, early days:

- assumed that a tracking system might not be possible (too harsh backgrounds), radhard Si-Detectors not yet sufficiently developed
- so, put all effort on muons, in a robust manner; put absorber to get rid of the rest (a strong magnetic field also helps here) and try to get best possible muon measurement.

maximize... but note that L drives cost of detector very much.

Oct 15

Various topologies...

But : Pending power prop.to.
of path perpendicular to B field.

Bdl

- Solenoid not optimal in forward direction
- For large solenoid radius: have to make it long in order to cover large rapidity
- If large enough: place calorimetry inside,

eg. with R_{sol}=3m, R_{Tracker}=1.2-1.3m,

- < 2 m left for ECAL+HCAL !
- Alternative: Toroid system. Large BL². Good pending power also in forward direction
- Keeps detectors inside toroids free of B field
- But : for large system: becomes expensive, needs very precise knowledge of (complicated) B-field, difficult alignment
- For tracking near IP: additional solenoid

How to design your detector

Basic tracking requirements

- Robust and redundant pattern recognition
 - Ifficient / precise reco of all charged particles with p_T > 0.1-1 GeV, up to rapidity ~ 2.5
- Reconstruction of secondary vertices, impact parameters
 - heavy flavours, b-jets, B decays
- Reconstruction of hadronic tau decays (one-prong, three-prong, thin jets)
- "Conflict of interest":
 - many layers (many hits) for robust track reco --> many channels; lots of supports (cables, cooling, ...)
 - Is but not too much material, bad for ECAL resolution and multiple scatt.

Remember: momentum resolution

$$\frac{\delta p}{p} = \frac{\delta s}{s} = \frac{8}{q} \frac{1}{L^2 B} p \,\delta s$$

for
$$L = 1 \text{ m}$$
, $B = 4 \text{ T}$, $p = 100 \text{ GeV}$
 $\frac{\delta p}{p} = 1 \%$ for $\delta s \approx 15 \,\mu\text{m}$

- need hit reconstruction at this level of prec. !
- e.g. Si-Tracker : optimize carefully pitch vs. strip length vs. # channels (material) vs. occupancy

Basic layout

G. Dissertori

For LHCb

How to design your detector

Calorimetry: Main principles

Excellent energy measurement of electrons, photons, jets

good coverage up to $\eta \sim 5$, also for E_{Tmiss}

- General Straight Ge
- Fine segmentation (lateral, longitudinal) for shower analysis
- Have to absorb ~ TeV objects (e,gamma,jets)
 - * shower max position $\, x_{
 m max} \propto \, x_0 \, \ln E \,$
 - $\stackrel{\scriptscriptstyle \odot}{=}$ to cover elmg. shower of ~ 1 TeV : ~ 25 X₀
 - solution to contain hadronic jets of ~ 1 TeV : 11 λ_0
 - take (X₀)_{PbWO4} = 0.89 cm
 - plus space for electronics : need ~ 50 cm
 - * take $(\lambda_0)_{Fe}$ = 16.8 cm : would need ~ 180 cm

GMS : R_{coil} - R_{tracker} - ECAL (+electronics) ~ 1 m !!

- space for 6 λ_0 , 7 λ_0 including ECAL
- added tail catcher (HO) after coil

Further considerations

- Homogenous vs. sampling calorimeter
- Very forward calo : at large distance (less radiation) or closer (better uniformity of rap coverage)
- Projective Tower sizes
 - relevant parameters: Moliere Radius, Occupancy
 - eg. $\Delta \eta \times (\Delta \Phi/2\pi) = 0.1 \times 0.1$ over $2 \cdot y_{\text{max}} = 10 \Rightarrow \mathcal{O}(10000)$ towers

Coverage

How to design your detector

Muons: Requirements were

- Reconstruct mass of narrow 2-muon state (eg. Z mass) at 1% precision
- Reconstruct 1 TeV muons with 10% precision
- Over wide rapidity range
- Identification in dense environment
- Measure and trigger on muons in standalone mode, for momenta above ~ 5 GeV
 - CMS can use IP as further constraint
 - ATLAS has much less multiple scattering
- Combine different technologies for chambers
 - redundancy, robustness, radiation hardness, different speed
- Sues €
 - Alignment (30 micron! for ATLAS)
 - Punch-through
 - Multiple scattering

$$\frac{\delta p_{\rm MS}}{p} \approx \frac{52 \cdot 10^{-3}}{\beta B \sqrt{L x_0}}$$

for
$$\beta \approx 1$$
, $B = 2 \text{ T}$, $L \approx 2 \text{ m}$, $x_0 = 0.14 \text{ m} \Rightarrow \frac{\delta p_{\text{MS}}}{p} \approx 5 \frac{\delta p_{\text{MS}}}{p}$

How to design your detector

Some examples...

CMS: Modular structure

- eg. CMS Barrel 13m long: not possible to build such long muon-chambers
- Idea of wheels. All cabling independent. Flexibility.
- Original idea: build/test everything at surface.
- Every part of detector "easily" accessible during shutdowns
- CMS Pixel detector is dramatic example

Finally: The Detectors **ATLAS and CMS** and LHCb

37

ATLAS

Compact Muon Solenoid

ATLAS vs CMS

Oct 15

Comparison (of design values) $\Phi^{\text{ETH Institute for Particle Physics}}$

	$ATLAS \equiv A$ Toroidal LHC ApparatuS	CMS ≡ Compact Muon Solenoid
MAGNET (S)	Air-core toroids + solenoid in inner cavity 4 magnets Calorimeters in field-free region	Solenoid Only 1 magnet Calorimeters inside field
TRACKER	Si pixels+ strips TRT \rightarrow particle identification B=2T $\sigma/p_T \sim 3x10^{-4} p_T \oplus 0.01$	Si pixels + strips No particle identification B=4T $\sigma/p_T \sim 1.5 \times 10^{-4} p_T \oplus 0.005$
EM CALO	Pb-liquid argon $\sigma/E \sim 10\%/\sqrt{E} + 0.007$ longitudinal segmentation	PbWO ₄ crystals σ/E ~ 3%/√E + 0.003 no longitudinal segm.
HAD CALO	Fe-scint. + Cu-liquid argon (10 λ) σ/E ~ 50%/√E ⊕ 0.03	Brass-scint. (~7 λ +catcher) σ/E ~ 100%/ $\sqrt{E} \oplus 0.05$
MUON	Air $\rightarrow \sigma/p_{T} \sim 2\%$ (@50GeV) to 10% (@1 TeV) standalone	Fe $\rightarrow \sigma/p_{T} \sim 1\%$ (@50 GeV) to 10% (@1 TeV) combining with tracker

LHCb

Particle Flow and Consequences

Use of global event description

- Charged particles well separated in large tracker volume & 3.8T B field
- Excellent tracking, able to go to down to very low momenta (~100 MeV)
- Granular electromagnetic calorimeter with excellent energy resolution
- In multi-jet events, only 10% of the energy goes to neutral (stable) hadrons (~60% charged, ~30% neutral electromagnetic)
- Therefore: Use a global event description :
 - Optimal combination of information from all subdetectors
 - Returns a list of reconstructed particles (e,mu,photons,charged and neutral hadrons)
 - Used as building blocks for jets, taus, missing transverse energy, isolation and PU particle ID

ETH Institute for Particle Physics

The Pflow jet composition

Impact on Jet Calibration

Jet energy calibration

- Question : how well do we know the calibration of the variable on the x-axis, eg. jet energy?
- A general problem for a very steeply falling spectrum!
- It makes a **big** difference if the jet energy scale uncertainty is 1%, 2% or 5%

→ an uncertainty of 30% (!) on the measured cross section

ETH Institute for Particle Physics

Our milestones:

1. Why do ATLAS and CMS look like they look like today?

2. Some highlights, and achievements

The speed, at which things appeared....

The speed, at which things appeared....

The environment...

2010 O(2) Pile-up events Event taken at random 150 ns inter-bunch spacing (filled) bunch crossings 2011 O(10) Pile-up events vent/taken at randor 50 ns inter-bunch spacing filled bunch cross

Data taking efficiencies ~94% At or above 90% used for physics. Kept the performance, despite high PU! **2012** O(20) Pile-up events

50 ns inter-bunch spacing

Oct 15

Good performance leads to good results

Picking "at random"...

Summer Scheme Schem

This plot really depresses me...

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

impressive list, similar plethora of results from CMS

but: read the fine-print !!

most of the time, limits are based on (many) assumptions, simplified models

Exotica: Executive summary

also this plot depresses me...

Oct 15

G. Dissertori

ETH Institute for Particle Physics

Conclusion

- This was (at most) an appetizer, a glimpse, a flash, a
- 2. no way to do justice to all the

fantastic achievements, the details, ...

3. and I didn't even mention the upgrades!

Run 2 is in full swing

https://acc-stats.web.cern.ch/acc-stats/#lhc/overview-panel

Summary

New Physics? at TeV scale?

your contribution

Doing something ordinary is a waste of time.

Madonna

інсь гнср

Event 1014192 Run 153454 Wed, 03 Jun 2015 10:57:16

contributic

58

Where to look....

- Rencontres de Moriond in 2015: <u>http://moriond.in2p3.fr</u>
- EPS-HEP2015 : http://eps-hep2015.eu
- Lepton-Photon 2015 : <u>http://indico.cern.ch/event/325831/</u>
- LHCP 2015 : <u>http://lhcp2015.com</u>
- Physics at the LHC and beyond, Vietnam, 2014: <u>http://events.lal.in2p3.fr/Physics-LHC-2014/</u>

- https://twiki.cern.ch/twiki/bin/view/AtlasPublic
- <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults</u>
- http://lhcb.web.cern.ch/lhcb/Physics-Results/LHCb-Physics-Results.html
- <u>https://twiki.cern.ch/twiki/bin/view/ALICEpublic/ALICEPublicResults</u>

- Dissertori, LHC detectors and early physics, <u>http://inspirehep.net/record/848687?In=en</u>
- Butterworth, Dissertori, Salam, Hard Processes in pp collisions at the LHC, <u>http://inspirehep.net/record/1087377?ln=en</u>
- J. Ellis, Theory Summary and prospects, <u>http://inspirehep.net/record/1312173?ln=en</u>
- D. Froidevaux, P. Sphicas, Ann. Rev. Nucl. Part. Sci. 56 (2006) 375
- * T. Carli, K. Rabbertz, S. Schumann, Studies of QCD at the LHC, arXiv:1506.03239
- P. Bechtle, T. Plehn, C. Sander, The Status of Supersymmetry after the LHC Run 1, arXiv:1506.03091
- * of course, there are many more on the market....