

Dark matter and detectors

Laura Baudis University of Zurich

EDIT school Frascati, October 27, 2015

Content

Overview: dark matter and candidates

Direct WIMP detection

Principles, input from astrophysics, particle physics, nuclear physics

Expected signatures and rates in a terrestrial detector

Backgrounds

Overview of experimental techniques

Cryogenic experiments at mK temperatures

Principles of phonon mediated detectors, temperature measurement

Current and future experiments

Liquid Noble Element Experiments

Principles, the scintillation and ionization process in noble liquids

Challenges for dark matter detectors

The single and double phase detector concept

Current and future experiments

Conclusions

Some (very brief) history

- **1922:** J.C. Kapteyn coined the name 'dark matter', in studies of the stellar motion in our galaxy (he found that no dark matter is needed in the solar neighbourhood)
- **1932:** J. Oort suggested that there would be more dark than visible matter in the vicinity of the Sun *(later the result turned out to be wrong)*
- 1933: F. Zwicky found 'dunkle Materie' in the Coma cluster (the redshift of galaxies were much larger than the escape velocity due to luminous matter alone)
- **1970s:** V.C. Rubin & W. Ford: flat optical rotation curves of spiral galaxies, 1978: Bosma, radio

Our Universe today: apparently consistent picture from an impressive number of observations

The dark matter puzzle

The dark matter puzzle remains *fundamental*: dark matter leads to the formation of structure and galaxies in our universe

We have a standard model of CDM, from 'precision cosmology' (CMB, LSS): however, *measurement* ≠ *understanding*

For ~85% of matter in the universe is of unknown nature

Large scale distribution of dark matter, probed through gravitational lensing

HST COSMOS survey; Nature 445 (2007), 268

What do we know about the dark matter?

So far, we mostly have "negative" information

Constraints from astrophysics and searches for new particles:

No colour charge

No electric charge

No strong self-interaction

Stable, or very long-lived

Probing dark matter through gravity

Parameter space for searches

- Masses & interaction cross sections span an enormous range
- Most dark matter experiments optimised to search for WIMPs
- However also searches for axions, ALPs, SuperWIMPs, etc

Parameter space for searches

Parameter space for searches

H. Baer et al., Phys. Rept. 555, 2014

XENON, Phys. Rev. D 90, 062009 (2014)

How to detect Weakly Interacting Massive Particles

Direct detection

nuclear recoils from elastic scattering

dependance on A, J; annual modulation, directionality

local density and v-distribution

Indirect detection

high-energy neutrinos, gammas, charged CRs

look at over-dense regions in the sky

astrophysics backgrounds difficult

Accelerator searches

missing E_T, mono-'objects', etc

can it establish that the new particle is the DM?

Direct detection

 $=> E_{vis}$ (q ~ tens of MeV):

tic halos. This may be feasible if the galactic halos are made of particles with coherent weak interactions and masses $1-10^6$ GeV; particles with spin-dependent interactions of typical weak

strength and masses $1-10^2$ GeV; or strongly interacting particles of masses $1-10^{13}$ GeV.

Collisions of invisibles particles with atomic nuclei

 $E_R = \frac{q^2}{2m_N} < 30 \,\mathrm{keV}$ $v/c \sim 0.75 \times 10^{-3}$ $E_{\rm vis}$ **REVIEW D VOLUME 31, NUMBER 12** Detectability of certain dark-matter candidates **Observable: kinetic** Mark W. Goodman and Edward Witten Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544 energy of the recoiling (Received 7 January 1985) nucleus We consider the possibility that the neutral-current neutrino detector recently proposed by Drukier and Stodolsky could be used to detect some possible candidates for the dark matter in galac-

What to expect in a terrestrial detector?

 $\frac{dR}{dE_R} = N_N \frac{\rho_0}{m_W} \int_{\sqrt{(m_N E_{th})/(2\mu^2)}}^{v_{max}} dv f(v) v \frac{d\sigma}{dE_R}$

Detector physics

 N_N, E_{th}

Particle/nuclear physics $m_W, d\sigma/dE_R$

Astrophysics $\rho_0, f(v)$

Astrophysics

Local density (at R₀ ~ 8 kpc)

local measures use the vertical kinematics of stars near the Sun as 'tracers' (smaller error bars, but stronger assumptions about the halo shape)

global measures extrapolate the density from the rotation curve (larger errors, but fewer assumptions) Density map of the dark matter halo rho = [0.1, 0.3, 1.0, 3.0] GeV cm⁻³

$$\rho(R_0) = 0.2 - 0.56 \,\mathrm{GeV \, cm^{-3}} = 0.005 - 0.015 \,\mathrm{M_{\odot} \, pc^{-3}}$$

J. Read, Journal of Phys. G41 (2014) 063101

=> WIMP flux on Earth: ~10⁵ cm⁻²s⁻¹ (M_W=100 GeV, for 0.3 GeV cm⁻³)

Particle physics

- Use effective operators to describe WIMP-quark interactions
- Example: vector mediator

$$\mathcal{L}_{\chi}^{\text{eff}} = \frac{1}{\Lambda^2} \bar{\chi} \gamma_{\mu} \chi \bar{q} \gamma^{\mu} q$$

- The effective operator arises from "integrating out" the mediator with mass M and couplings g_q and g_X to the quark and the WIMP

$$\begin{array}{c} \chi \\ & \chi \\ & & \\ N \end{array} \qquad \begin{array}{c} \chi \\ & & \\ & & \\ & & \\ N \end{array} \qquad \begin{array}{c} \Lambda = \frac{M}{\sqrt{g_q g_\chi}} \\ & \Rightarrow \sigma_{\rm tot} \propto \Lambda^{-4} \\ & \uparrow \\ & & \\$$

14

Example cross sections

Scattering cross section on nuclei

- In general, interactions leading to WIMP-nucleus scattering are parameterized as:
 - scalar interactions (coupling to WIMP mass, from scalar, vector, tensor part of L)

$$\sigma_{SI} \sim \frac{\mu^2}{m_\chi^2} [Zf_p + (A - Z)f_n]^2$$

f_p, f_n: scalar 4-fermion couplings to p and n

=> nuclei with large A favourable (but nuclear form factor corrections)

• spin-spin interactions (coupling to the nuclear spin J_N, from axial-vector part of L)

$$\sigma_{SD} \sim \mu^2 \frac{J_N + 1}{J_N} (a_p \langle S_p \rangle + a_n \langle S_n \rangle)^2$$

 a_p , a_n : effective couplings to p and n; $\langle S_p \rangle$ and $\langle S_n \rangle$ expectation values of the p and n spins within the nucleus

Form factor corrections

• With the WIMP-nucleus speed being of the order of 100 km s⁻¹, the average momentum transfer

 $\langle p \rangle \simeq \mu \langle v \rangle$

- will be in the range between 3 MeV/c 30 MeV/c for WIMP and nucleus masses in the range 10 GeV/c² - 100 GeV/c². Thus the elastic scattering occurs in the extreme non-relativistic limit and the scattering will be isotropic in the center of mass frame
- The de Broglie wavelength corresponding to a momentum transfer of p = 10 MeV/c

$$\lambda = \frac{h}{p} \simeq 20 \,\mathrm{fm} > r_0 A^{1/3} \mathrm{fm} = 1.25 \,\mathrm{fm} \, A^{1/3}$$

- is larger than the size of most nuclei, thus the scattering amplitudes on individual nucleons will add coherently
- coherence loss will be important for heavy nuclei and/or WIMPs, and WIMPs in the tail of the velocity distribution

Form factor corrections: spin-dependent

 WIMP-nucleus response (based on detailed nuclear structure calculations) especially important for spin-dependent interactions

$$\frac{d\sigma_{SD}}{dq^2} = \sigma_{0,SD} \times S_A(q)$$

Expected interaction rates

 For a typical WIMP mass of 100 GeV/c², the expected WIMP flux on Earth (for the 'standard local density' value) is:

$$\phi_{\chi} = \frac{\rho_{\chi}}{m_{\chi}} \times \langle v \rangle = 6.6 \times 10^4 \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$$

- This flux is sufficiently large that, even though WIMPs are weakly interacting, a small but potentially measurable fraction will elastically scatter off nuclei in an Earth-bound detector
- Direct dark matter detection experiments aim to detect WIMPs via nuclear recoils which are caused by WIMP-nucleus elastic scattering
- Assuming a scattering cross section of 10^{-38} cm², the expected rate (for a nucleus with atomic mass A = 100) would be:

$$R = \frac{N_A}{A} \times \phi_{\chi} \times \sigma \sim 0.13 \,\mathrm{events} \,\mathrm{kg}^{-1} \mathrm{yr}^{-1}$$

Expected interaction rates

Example: spectral dependance on the WIMP mass

- Recoil spectrum gets shifted to low energies for low WIMP masses
- One needs a light target and/or a low threshold to see low-mass WIMPs

Dark matter signatures

- Rate and shape of recoil spectrum depend on target material
- Motion of the Earth causes:
 - annual event rate modulation: June December asymmetry ~ 2-10%
 - sidereal directional modulation: asymmetry ~20-100% in forwardbackward event rate

Backgrounds

- Cosmic rays & cosmic activation of detector materials
- Natural (²³⁸U, ²³²Th, ⁴⁰K) & anthropogenic (⁸⁵Kr, ¹³⁷Cs) radioactivity: $\gamma, e^-, n, lpha$
- Ultimately: neutrino-nucleus scattering (solar, atmospheric and supernovae neutrinos)

How to deal with backgrounds?

- Go deep underground
 - <image>
- Use active shields

HPGe material screening

Select low-background materials

How to deal with backgrounds?

• Fiducialization

• Discrimination

Direct dark matter detection techniques

The WIMP landscape in 2015

SUSY Predictions: 2 examples

L. Rozkowski, Stockholm 2015

M. Cahill-Rowley, Phys.Rev. D91 (2015) 055011

 10^{3}

DAMA/LIBRA annual modulation signal

- Period = 1 year, phase = June 2 \pm 7 days; 9.3-sigma
- Results in tension with many WIMP searches
- Several experiments to directly probe the modulation signal with similar detectors (Nal, Csl): SABRE, ANAIS, DM-Ice, KIMS
- "Leptophilic" models viable (until a few weeks ago...)

SABRE, 50 kg Nal detectors

30

PMTs

R. Bernabei et al, EPJ-C67 (2010)

Cryogenic Experiments at mK Temperatures

Cryogenic Experiments at mK Temperatures

- Principle: phonon (quanta of lattice vibrations) mediated detectors
- Motivation: increase the energy resolution + detect smaller energy depositions (lower the threshold); use a variety of absorber materials (not only Ge and Si)
- The energy resolution (W = FWHM) of a semiconductor detector (N = nr. of e⁻-h excitations)

$$W_{stat} = 2.35 \sqrt{F\epsilon E}$$
 $\frac{\sigma(E)}{E} = \sqrt{\frac{F}{N}} = \sqrt{\frac{F\epsilon}{E}}$ $W_{stat} = 2.35 \sigma(E)$

- E = deposited energy; F = Fano factor; N = E/ε; in Si: ε = 3.6 eV/e⁻-h pair (band gap is 1.2 eV! where does 70% of the energy go?). F-> the energy loss in a collision is not purely statistical (=0.13 in Ge; 0.11 in Si)
- Maximum phonon energy in Si: 60 meV
 - many more phonons are created than e⁻-h pairs!
- For dark matter searches:
 - thermal phonon detectors (measure an increase in temperature)
 - athermal phonon detectors (detect fast, non-equilibrium phonons)
- Detector made from superconductors: the superconducting energy gap $2\Delta \sim 1 \text{ meV}$
 - binding energy of a Cooper pair (equiv. of band gap in semiconductors); 2 quasi-particles for every unbound Cooper pair; these can be detected -> in principle large improvement in energy resolution

Basic Principles of mK Cryogenic Detectors

• A deposited energy E (ER or NR) will produce a temperature rise ΔT given by:

$$\Delta T = \frac{E}{C(T)} e^{-\frac{t}{\tau}} \qquad \tau = \frac{C(T)}{G(T)}$$

C(T) = heat capacity of absorber

G(T) = thermal conductance of the link between the absorber and the reservoir at temperature T_0

Normal metals:

the electronic part of $C(T) \sim T$, and dominates the heat capacity at low temperatures

Superconductors:

the electronic part is proportional to $exp(-T_c/T)$ (T_c = superconducting transition temperature) and is negligible compared to lattice contributions for T<<T_c

Basic Principles of mK Cryogenic Detectors

 For pure dielectric crystals and superconductors at T << T_c, the heat capacity is given by:

$$C(T) \sim \frac{m}{M} \left(\frac{T}{\theta_D}\right)^3 \,\mathrm{J}\,\mathrm{K}^{-1}$$

m = absorber mass

M = molecular weight of absorber

 $\Theta_{\rm D}$ = Debye temperature (at which the highest frequency gets excited) $\theta_D = \frac{h\nu_m}{k}$

- \rightarrow the lower the T, the larger the ΔT per unit of absorbed energy
- rightarrow in thermal detectors E is measured as the temperature rise ΔT
- Example: at T = 10 mK, a 1 keV energy deposition in a 100 g detector increases the temperature by:

 $\Delta T \approx 1 \,\mu K$

• this can be measured!

Thermal Detectors

 The intrinsic energy resolution (as FWHM) of such a calorimeter is given by (k_B is the Boltzmann constant):

$$W = 2.35\xi\sqrt{k_B T^2 C(T)}$$

$$\frac{C(T)}{k_B} = \text{number of phonon modes}$$
$$k_B T = \text{mean energy per mode}$$

 $\xi = 1.5 - 2$ Info about the sensor. the thermal link and the T-dependance of C(T)

• Example for the theoretical expectation of the intrinsic energy resolution:

- a 1 kg Ge crystal operated at 10 mK could achieve an energy resolution of about 10 eV => two orders of magnitude better than Ge ionization detectors
- a 1 mg of Si at 50 mK could achieve an energy resolution of 1 eV => two orders of magnitude better than conventional Si detectors

Temperature Sensors

- Semiconductor thermistor: a highly doped semiconductor such that the resistance R is a strong function of temperature (NTD = neutron-transmutation-doped Ge - uniformly dope the crystal by neutron irradiation)
- Superconducting (SC) transition sensor (TES/SPT): thin film of superconductor biased near the middle of its normal/SC transition
- For both NTDs and TESs/SPTs, an energy deposition produces a change in the electrical resistance R(T). The response can be expressed in terms of the logarithmic sensitivity:

Typical values:

 $\alpha \equiv \frac{d \log(R(T))}{d \log(T)}$

- α = -10 to -1 for semiconductor thermistors
- $\alpha \sim +10^3$ for TES/SPT devices

→ the sensitivity of TES/SPTs can be extremely high (depending on the width of the SC/ normal transition)

→ however, the temperature of the detector system must be kept very stable
Example: Thermal Detector with SPT-sensor

• The change of resistance due to a particle interaction in the absorber is detected by a superconducting quantum interference device (SQUID) (by the change in current induced in the input coil of the SQUID)

- Thermal detectors: slow -> ms for the phonons to relax to a thermal distribution
- TES: can be used to detect fast, athermal phonons -> how are these kept stable?

TES with Electrothermal-Feedback

- $T_0 \ll T_C$: substrate is cooled well below the SC transition temperature T_C

• A voltage V_B is placed across the film (TES)

and equilibrium is reached when ohmic heating of the TES by its bias current is balanced by the

heat flow into the absorber

When an excitation reaches the TES

- \rightarrow the resistance R increases
- \rightarrow the current decreases by ΔI

\Rightarrow this results in a reduction in the Joule heating

The feedback signal = the change in Joule power heating the film $P=IV_B=V_B^2/R$

The energy deposited is then given by:

=> the device is self-calibrating

$$E = -V_B \int \Delta I(t) dt$$

TES with Electrothermal-Feedback

- By choosing the voltage V_{B} and the film resistivity properly

=> one achieves a stable operating T on the steep portion of the transition edge

superconducting

ET-feedback: leads to a thermal response time 10² faster than the thermal relaxation time + a large variety of absorbers can be used with the transition edge sensor

Experiments at ~mK temperatures

CDMS at Soudan SuperCDMS at SNOlab Ge/Si detectors at 30 mK Detect phonons and charge

EDELWEISS at Modane Ge detectors at 18 mK Detect phonons and charge CRESST at LNGS CaWO₃ detectors at 10 mK Detect phonons and light

 $[1][\bar{1}]$

Background rejection in CDMS

 Ratio of the charge/phonon-signal and time difference between charge and phonon signals => distinguish signal (WIMPs) from background of electromagnetic origin

EDELWEISS and CRESST (example, older runs)

Ge detectors at 18 mK

5 events (427 kg-day)

3 expected from backgrounds

operates 36 new, 800 g crystals with improved background rejection

CaWO₃ detectors at 10 mK

67 events observed (730 kg-day)

~ 37 expected from backgrounds

there was room for a signal...

later focussed on reducing backgrounds

New CRESST data

- Exposure of 29.35 kg days, one upgraded detector module (data August 2013 January 2014)
- New design with fully scintillating inner housing (past: metal clamps holding crystals were not scintillating, ²⁰⁶Pb recoils from alpha-decays of ²¹⁰Po were source of background)
- The past excess over background found in previous runs is not confirmed

Red: tungsten NR band; black: oxygen NR band

Eur. Phys. J-C 74, 2014

New phase of EDELWEISS

- Operate 36 new, fully inter-digitized detectors, 800 g each (~ 600 g fiducial mass)
- With 150 live days => 3000 kg days of exposure
- · The cryostat was redesigned, and an additional neutron shield added
- 2015-2016: installation of new detectors with reduced threshold

Bolometers: recent results

Future: SuperCDMS/EURECA at SNOLAB

Start data taking in 2018

Cryogenic detectors at mK temperatures

Liquefied noble gases

Cryogenic noble liquids: some properties

- Xenon ("the strange one") and argon ("the inactive one") used in dark matter detectors
- Dense, homogeneous targets with self-shielding; fiducialization
- Large detector masses feasible at moderate costs
- High light (~40 photons/keV) and charge ($W_{LAr} = 24 \text{ eV}$, $W_{LXe} = 15 \text{ eV}$) yields

Properties [unit]	\mathbf{Xe}	\mathbf{Ar}	\mathbf{Ne}
Atomic number:	54	18	10
Mean relative atomic mass:	131.3	40.0	20.2
Boiling point $T_{\rm b}$ at 1 atm [K]	165.0	87.3	27.1
Melting point $T_{\rm m}$ at 1 atm [K]	161.4	83.8	24.6
Gas density at 1 atm & 298 K $[g l^{-1}]$	5.40	1.63	0.82
Gas density at 1 atm & $T_{\rm b} \ [{\rm g l^{-1}}]$	9.99	5.77	9.56
Liquid density at $T_{\rm b} [{\rm g cm^{-3}}]$	2.94	1.40	1.21
Dielectric constant of liquid	1.95	1.51	1.53
Volume fraction in Earth's atmosphere [ppm]	0.09	9340	18.2

W. Ramsay: "These gases occur in the air but sparingly as a rule, for while argon forms nearly 1 hundredth of the volume of the air, neon occurs only as 1 to 2 hundred-thousandth, helium as 1 to 2 millionth, krypton as 1 millionth and xenon only as about 1 twenty-millionth part per volume. *This more than anything else will enable us to form an idea of the vast difficulties which attend these investigations.* "

Ionization in noble liquids

- The energy loss of an incident particle in noble liquids is shared between: *excitation, ionization and sub-excitation electrons liberated in the ionization process*
- The average energy loss in ionization is slightly larger than the ionization potential or the gap energy, because it includes multiple ionization processes
- the ratio of the W-value (= average energy required to produce an electron-ion pair) to the ionization potential or gap energy = 1.6 1.7

Material	Ar	Kr	Xe
Gas			
Ionization potential I (eV)	15.75	14.00	12.13
W values (eV)	26.4 ^a	24.2 ^a	22.0 ^a
Liquid			
Gap energy (eV)	14.3	11.7	9.28
W value (eV)	23.6 ± 0.3^{b}	18.4 ± 0.3^{c}	15.6 ± 0.3^{d}

- the W-value in the liquid phase is smaller than in the gaseous phase

- the W-value in xenon is smaller than the one in liquid argon, and krypton (and neon)

=> the ionization yield is highest in liquid xenon (of all noble liquids)

The scintillation process in noble liquids

 Scintillation in noble liquids arises in two distinct processes: excited atoms R* (excitons) and ions R⁺, both produced by ionizing radiation:

$$\mathbf{R}^* + \mathbf{R} + \mathbf{R} \to \mathbf{R}_2^* + \mathbf{R}$$

 $R_2^* \to 2R + h\nu$

$$R^+ + R \to R_2^+$$

 $\mathbf{R}_2^+ + e^- \to \mathbf{R}^{**} + \mathbf{R}$

 $R^{**} \rightarrow R^* + heat$

 $\mathbf{R}^* + \mathbf{R} + \mathbf{R} \to \mathbf{R}_2^* + \mathbf{R}$

 $R_2^* \to 2R + h\nu$

Excitons (R*) will rapidly form excited dimers (R*₂) with neighbouring atoms

The excited dimer R^{*}₂, at its lowest excited level, is de-excited to the dissociative ground state by the emission of a single UV photon

This comes from the large energy gap between the lowest excitation and the ground level, forbidding other decay channels such as non-radiative transitions

hv = *UV photon emitted in the process*

The scintillation process in noble liquids

The energy of the UV photons

Light yield in noble liquids (nuclear recoils)

- In general, two methods are used:
 - ➡ a direct method using mono-energetic neutrons scatters which are tagged with a n-detector
 - an indirect method by comparing measured energy spectra in LXe from n-sources (AmBe) with Monte Carlo predictions

Light yield in noble liquids (electronic recoils)

- The light yield decreases with lower deposited energies in the LXe; field quenching is ~ 75%, only weak field-dependance
- The energy threshold of XENON100 is 2.3 keV => can test DAMA/LIBRA

- Nuclear recoils have denser tracks, and are assumed to have larger electron-ion recombination than electronic recoils
 - in consequence, the collection of ionization electrons becomes more difficult for nuclear than electronic recoils
- The ionization yield of nuclear recoils is defined as the number of observed electrons per unit recoil energy:

comparison of AmBe neutron calibration data

Ionization Yield of Nuclear Recoils in Noble Liquids

· Charge yield as a function of the applied field

- the dependance on the field is weak
- the yield increases at low recoil energies it is argued that this is due to the lower recombination rate expected from the drop in electronic stopping power at low energies
- the increase allows the observation of xenon nuclear recoils down to a few keVr, improving the sensitivity for WIMP detection

Electron Attachment and Light Absorption

- To achieve a high collection efficiency for both ionization and scintillation signals, the concentration of impurities in the liquid has to be reduced and maintained to a level below 1 part per 10⁹ (part per billion, ppb) oxygen equivalent
- The scintillation light is strongly reduced by the presence of water vapour
- The ionization signal requires both high liquid purity (in terms of substances with electronegative affinity, SF₆, N₂O, O₂, etc) and a high field (typically ~ kV/ cm)
- Attenuation lengths of ~1 m for electrons and photons were already achieved > 1m and are necessary for ton-scale experiments

Fig. 21.4. Rate constant for the attachment of electrons in liquid xenon $(T = 167 \,^{\circ}\text{K})$ to several solutes: $(\triangle) \text{ SF}_6$, $(\Box) \text{ N}_2\text{O}$, $(\circ) \text{ O}_2$ [174].

Particle discrimination

- Pulse shape of prompt scintillation signal
 - ➡ the ratio of light from singlet and triplet de
- Charge versus light (LAr and LXe)
 - ➡ the recombination probability, and thus th

LAr (DarkSide-10)

LXe (XENON100)

Cryogenic Noble Liquids: some challenges

- Cryogenics: efficient, reliable and cost effective cooling systems
- Detector materials: compatible with low-radioactivity and purity requirements
- Intrinsic radioactivity: ³⁹Ar and ⁴²Ar in LAr, ⁸⁵Kr in LXe, radon emanation/diffusion

• Light detection:

- efficient VUV PMTs, directly coupled to liquid (low T and high P capability, high purity), effective UV reflectors (also solid state Si devices are under study)
- → light can be absorbed by H₂O and O₂: continuous recirculation and purification

Charge detection:

- requires << 1ppb (O₂ equivalent) for e⁻-lifetime > 1 ms (commercial purifiers and continuous circulation)
- ➡ electric fields ≥ 1 kV/cm required for maximum yield for MIPs; for alphas and NRs the field dependence is much weaker, challenge to detect a small charge in presence of HV

Single-phase noble liquid detectors

Xenon XMASS at Kamioka, 832 kg

Refurbished, running since 2013 Results in 2016

Argon

DEAP-3600 at SNOLAB, 3.6 t

In commissioning First data and results in late 2015 and early 2016 $\sim 1 \times 10^{-46} \text{ cm}^2$ sensitivity, 3 yr run

The Double-Phase Detector Concept

- Particle interaction in the active volume produces prompt scintillation light (S1) and ionization electrons
- Electrons drift to interface (E= 0.53 kV/cm) where they are extracted and amplified in the gas.
 Detected as proportional scintillation light (S2)
 - (S2/S1)_{WIMP} << (S2/S1)_{Gamma}
 - 3-D position sensitive detector with particle ID

Overview: existing projects

DarkSide50 in LS shield at LNGS:

50 kg LAr (~33 kg fiducial), dualphase, 38 PMTs taking science data

LUX: In water Cherenkov shield at SURF:

350 kg LXe (100 kg fiducial), dual-phase, 122 PMTs, second run started in 2015

XENON100 in conventional shield at LNGS:

161 kg LXe (~50 kg fiducial), dualphase, 242 PMTs taking calibration data

PandaX in conventional shield at CJPL:

stage I: 123 kg LXe (25 kg fiducial), dual-phase, 180 PMTs stage II: 500 kg, running

Example: the XENON100 detector

TPC with 30 cm drift x 30 cm diameter 161 kg ultra pure LXe (62 kg as target) 1" square PMTs with ~1 mBq (U/Th)

Requirements:

100 x less background than XENON10

10 x more fiducial mass than XENON10

Solutions:

Cryocooler and FTs outside shield

Materials screened for low radioactivity

LXe scintillator active veto system

Improved passive shield system

Dedicated Kr distillation column

Instrument described in: Astroparticle Physics 35, 573-590, 2012

The XENON100 detector design

Astropart. Phys. 35 (2012) 573-590

- TPC with 30.6 cm height, 15.3 cm radius, made of 24 interlocking teflon panels
- Drift field (0.53 kV/cm) generated between cathode on bottom (-16 kV) and grounded gate grid on top
- Anode at +4.5 kV between two grounded grids: extraction field of ≈ 12 kV
- Field shaping rings (40) for homogeneous drift field inside the TPC
- Liquid xenon shield (99kg), 4 cm thick, optically separated from the TPC
- 242 PMTs: 98 on top, 80 on bottom, 64 in the liquid xenon shield
- Because of the 1.69 refractive index of LXe, about 80% of the S1 signal is seen by the bottom PMT array

The photosensors

- 1-inch square R8520 Hamamatsu PMTs, optimized to work at LXe T and P, and of low-radioactivity (< 1 mBq/PMT in ²³⁸U/²³²Th)
- Top array: 98 PMTs (23% quantum efficiency) in concentric circles to improve radial event position reconstruction, teflon holder
- Bottom array: 80 PMTs, closely packed, and of higher quantum efficiency (~ 33% at 178 nm), for efficient S1 light collection
- Liquid xenon veto: 64 PMTs, 23% quantum efficiency

top array

bottom array

veto PMTs

Screening results in Astroparticle Physics 35, 43-49, 2011

Location and shield

- Gran Sasso Laboratory: shield against cosmic rays: 1.4 km of mountain
- Passive shield:
 - ⇒ 5 cm (2 tons) of Cu, 20 cm (1.6 tons) of PE, 20 cm (33 tons) of Pb, plus 20 cm water shield
- Detector housing is continuously purged with boil-off N_2 , to maintain a radon level < 0.5 Bq/m³
- All materials were screened with HPGe detectors at LNGS JINST 6 P08010, 2011

Screening results in Astroparticle Physics 35, 43-49, 2011

1 m

Example of a low-energy event

Example of a low energy (9 keVnr) nuclear recoil

4 photoelectrons detected from about 100 S1 photons

645 photoelectrons detected from 32 ionization electrons which generated about 3000 S2 photons

the measured drift times gives the z-coordinate of the interaction

the measured PMT-hit-pattern in the top array provides the x-yposition of the interaction

The measured background in XENON100

- Data and MC (no MC tuning; before the active LXe veto cut)
- Region above ~ 1500 keV: saturation in the PMTs
- The background meets the design specifications:
- ➡ 100 times lower than in XENON10

XENON100 collaboration, arXiv:1101.3866, PRD 83, 082001 (2011)

Calibration of ER and NR bands

- The electronic recoil (ER) band is calibrated with high energy gammas from ⁶⁰Co and ²³²Th sources
- This data is also used to determine the background in the signal region due to low-energy Compton scatters
- The nuclear recoils band (NR) is calibrated with an AmBe neutron source
- Single scatters from elastic neutronxenon collisions are used to define the expected WIMP signal region

Electronic recoil (ER) band

Nuclear recoil (NR) band

Nuclear recoils: data and MC

Matching the AmBe data with MC simulations

Background prediction for Run10

- Expected background in: 34 kg inner region, 224.6 live days, 99.75% rejection of electronic recoils
- Electronic recoil background:
 - 0.79±0.16 events
 - from ER calibration data, scaled to nonblinded ER band background data
- Nuclear recoil background
 - 0.17+0.12-0.07 events
 - from cosmogenic and radiogenic neutrons
- Total: 1.0±0.2 events

Observed events after data unblinding

- Two events observed in signal region (there is a 26.4 % chance for upward fluctuation): at 7.1 keVnr (3.3 pe) and at 7.8 keVnr (3.8 pe)
- Both events at low S2/S1 with respect to NR calibration data
- Visual inspection: waveforms of high quality

Predictions for light WIMPs

How would signal claims of other experiments look like in XENON100's Run10 data?

WIMP with $m_W = 8 \text{ GeV}$

WIMP with $m_W = 25 \text{ GeV}$

XENON100 spin-independent results

- No evidence for WIMP interactions; region above thick blue line is excluded
- Upper limit on SI WIMP-nucleon cross section is $2x10^{-45}$ cm² at M_W = 55 GeV

Vanilla Exclusion Plot

· Assume we have detector of mass M, taking data for a period of time t

 The total exposure will be ε = M × t [kg days]; nuclear recoils are detected above an energy threshold E_{th}, up to a chosen energy E_{max}. The expected number of events n_{exp} will be:

$$n_{\exp} = \varepsilon \int_{E_{th}}^{E_{\max}} \frac{dR}{dE_R} dE_R$$

⇒ cross sections for which $n_{exp} \ge 1$ can be probed by the experiment

 If ZERO events are observed, Poisson statistics implies that n_{exp} ≤ 2.3 at 90% CL
 => exclusion plot in the cross section versus mass parameter space
 (assuming known local density)

XENON100 spin-dependent results

• ¹²⁹Xe (spin-1/2) and ¹³¹Xe (spin-3/2), two isotopes with J \neq 0 and abundance of 26.2% and 21.8% in XENON100

New XENON100 results

- Dark matter particles interacting with e⁻
 - XENON100's ER background lower than DAMA modulation amplitude
 - search for a signal above background in the ER spectrum

XENON collaboration, arXiv: 1507.07747, Science 349, 2015

Consider the 70 days with the largest signal

DAMA/LIBRA modulated spectrum as would be seen in XENON100 (for axial-vector WIMP-e⁻ scattering)

XENON100 excludes leptophilic models

- Dark matter particles interacting with e⁻
 - 1. No evidence for a signal
 - 2. Exclude various leptophilic models as explanation for DAMA/LIBRA

XENON collaboration, arXiv: 1507.07747, Science 349, 2015

Liquefied noble gases recent results

Future noble liquid detectors

- Under construction: XENON1T/nT (3.3 t/ 7t LXe) at LNGS
- Proposed LXe: LUX-ZEPLIN 7t (approved), XMASS 5t LXe
- Proposed LAr: DarkSide 20 t LAr, DEAP 50 t LAr
- Design & R&D studies: DARWIN 30-50 t LXe: ARGO 300 t LAr

DARWIN: 50 t LXe

XENON1T: 3.3 t LXe

DarkSide: 20 t LAr

The XENON1T experiment

- Under construction at LNGS since autumn 2013; commissioning planned for late 2015
- Total (active) LXe mass: 3.3 t (2 t), 1 m electron drift, 248 3-inch PMTs in two arrays
- Background goal: 100 x lower than XENON100 ~ 5x10⁻² events/(t d keV)

XENON1T: status of construction work

- · Water Cherenkov shield built and instrumented
- Cryostat support, service building, electrical plant completed
- Several subsystems (cryostat, cryogenics, storage, purification, cables & fibres, pipes) installed and under commissioning underground

XENON1T: status of construction work

• Water Cherenkov shield built and instrumented

The XENON1T inner detector

- PMTs tested at cryogenic temperatures; arrays with electronics & cables assembled
- TPC assembly and cold tests completed; installation at LNGS in October/November 2015

The TPC

PMT array, bases & cables

TPC assembly, cool down tests

The XENON1T inner detector

- PMTs tested at cryogenic temperatures; arrays assembled
- TPC assembly and cold tests completed; installation at LNGS in October/November 2015

The XENON1T field cage

Field cage in LNGS clean room 74 Cu field shaping rings

Field cage in LNGS clean room Teflon panels for >98% reflectivity of 175 nm VUV light

The XENON1T PMT arrays

Bottom PMT array Close packing for efficient S1 light collection Top PMT array Optimised for optimal position reconstruction (S2-based)

From XENON100 to XENON1T in numbers

	XENON100	XENON1T
Total LXe mass [kg]	161	3500
Background [dru]	5 x 10 ⁻³	5 x 10 ⁻⁵
²²² Rn [µBq/kg]	~ 65	~ 1
^{nat} Kr [ppt]	~120	~0.2
e- drift [cm]	30	100
Cathode HV [kV]	-16	-100

XENON1T background predictions

- Materials background: based on screening results for all detector components
- ⁸⁵Kr: 0.2 ppt of ^{nat}Kr with 2x10^{-11 85}Kr; ²²²Rn: 1 μBq/kg; ¹³⁶Xe double beta: 2.11x10²¹ y
- ER vs NR discrimination level: 99.75%; 40% acceptance for NRs
 - ➡ Total ERs: 0.3 events/year in 1 ton fiducial volume, [2-12] keVee
 - Total NRs: 0.2 events/year in 1 ton, [5-50] keVnr (muon-induced n-BG < 0.01 ev/year)

XENON1T backgrounds and WIMP sensitivity

Single scatters in 1 ton fiducial 99.75% S2/S1 discrimination NR acceptance 40% Light yield = 7.7 PE/keV at 0 field $L_{eff} = 0$ below 1 keVnr

WIMP mass: 50 GeV Fiducial LXe mass: 1 t Sensitivity at 90% CL

Total Background in XENON1T

ER + NR backgrounds and WIMP spectra

Sensitivity versus exposure (in 1 ton fiducial mass)

DARWIN-LXe TPC baseline concept

darwin-observatory.org

- 30-50 tons LXe in total
- ~ few $x \ 10^3$ photosensors
- >2 m drift length
- >2 m diameter TPC
- PTFE walls with Cu field shaping rings
- Background goal: dominated by neutrinos

3-inch PMT, R11410-21

4-inch PMT

Science reach: WIMP physics with xenon

Probe WIMP-Xe interactions via:

- spin-independent elastic scattering: ¹²⁴Xe, ¹²⁶Xe, ¹²⁸Xe, ¹²⁹Xe, ¹³⁰Xe, ¹³¹Xe, ¹³²Xe (26.9%), ¹³⁴Xe (10.4%), ¹³⁶Xe (8.9%)
- spin-dependent elastic scattering: ¹²⁹Xe (26.4%), ¹³¹Xe (21.2%)
- inelastic WIMP-¹²⁹Xe and WIMP-¹³¹Xe scatters $\chi + {}^{129,131} Xe \rightarrow \chi + {}^{129,131} Xe^* \rightarrow \chi + {}^{129,131} Xe + \gamma$

Backgrounds: nuclear recoils

- Radiogenic goal: <7 x 10⁻⁴ events/(t y)
 - active LS veto around cryostat under study
- **Cosmogenic** (MC: 7.3 x 10^{-10} n/(cm² s) for $E_n > 10$ MeV)
 - <0.01 events/(t y) in XENON1T/nT shield</p>
 - <<0.003 events/(t y) in 14 m diameters</p>
 shield
- XENON1T muon veto performance mu improved by ~ a factor of 10 (very conservative)
- Alternative: line the experimental have veto (multi-layered proportional tube Lab)

DARWIN-LXe in 14 m ø water Cherenkov shield

DARWIN backgrounds: electronic recoils

Channel	Before discr	After discr (99.98%)
pp + ⁷ Be neutrinos	95	0.488
Materials	1.4	0.007
⁸⁵ Kr in LXe (0.1 ppt ^{nat} Kr)	40.4	0.192
²²² Rn in LXe (0.1 µBq/kg)	9.9	0.047
¹³⁶ Xe	56.1	0.036
	1 t x yr exposure, 2-30 keVee	200 t x yr exposure 4-50 keVnr, 30% acceptan

DARWIN backgrounds: electronic recoils

1 t x yr exposure, 2-30 keVee

WIMP physics: spectroscopy

Capability to reconstruct the WIMP mass and cross section for various masses (20, 100, 500 GeV/c²) and a spin-independent cross section of 2x10⁻⁴⁷ cm² (assuming different exposures)

1 and 2 sigma credible regions after marginalizing the posterior probability distribution over:

$$v_{esc} = 544 \pm 40 \text{ km/s}$$

 $v_0 = 220 \pm 20 \text{ km/s}$
 $\rho_{\chi} = 0.3 \pm 0.1 \text{ GeV/cm}^3$

Update: Newstead et al., PHYSICAL REVIEW D 88, 076011 (2013)

DARWIN WIMP sensitivity

• E = [5-35] keV_{nr}

99.98% discrimination, 30% NR acceptance, LY = 8 pe/keV at 122 keV

Spin-independent

Spin-dependent

arXiv:1506.08309, JCAP 10 (2015) 016

Note: "nu floor" = 3-sigma detection line at 500 CNNS events above 4 keV

Accelerator searches

- Minimal simplified DM model with only 4 variables: mDM, Mmed, gDM, gq
- Here DM = Dirac fermion interacting with a vector or axial-vector mediator; equalstrength coupling to all active quark flavours

Accelerator searches

- Minimal simplified DM model with only 4 variables: mDM, Mmed, gDM, gq
- Here DM = Dirac fermion interacting with a vector or axial-vector mediator; equalstrength coupling to all active quark flavours

WIMP-nucleon cross sections versus time

- About a factor of 10 increase every ~ 2 years
- Can we keep this rate of progress?

Conclusions

Direct detection experiments have reached tremendous sensitivities probe cross sections down to 10⁻⁴⁵ cm² at WIMP masses ~ 50 GeV probe particle masses below 10 GeV (new models) complementary with the LHC and with indirect searches test various other particle candidates

Excellent prospects for discovery

increase in WIMP sensitivity by 2 orders of magnitude in the next few years

reach neutrino background (measure neutrino-nucleus coherent scattering!) this/ next decade

The end

Of course, "the probability of success is difficult to estimate, but if we never search, the chance of success is zero"

G. Cocconi & P. Morrison, Nature, 1959

DARWIN technical challenge: backgrounds

ER dominance by solar neutrinos needs:

 1 µBq/kg is goal for XENON1T): control Rn levels with low-emanation materials & cryogenic distillation (use different vapour pressure), adsorption

Will directional information help?

- Yes, but mostly at low WIMP masses
- Directional detection techniques currently in R&D phase
- Would be very challenging to reach 10⁻⁴⁸ 10⁻⁴⁹ cm² with these techniques

P. Grothaus, M. Fairbairn, J. Monroe, arXiv: 1406.5047

Complementarity DD, ID, LHC

CMSSM

pMSSM

L. Rozkowski, Stockholm 2015

M. Cahill-Rowley, Phys.Rev. D91 (2015) 055011

Example: Solar axions with XENON100

Look for solar axions via their couplings to electrons, g_{Ae}, through the axio-electric effect

$$\sigma_{Ae} = \sigma_{pe}(E_A) \frac{g_{Ae}^2}{\beta_A} \frac{3E_A^2}{16\pi\alpha_{em}m_e^2} \left(1 - \frac{\beta_A^{2/3}}{3}\right)$$

$$\phi_A \propto g_{Ae}^2 \Longrightarrow R \propto g_{Ae}^4$$

 XEON100: based on 224.6 live days x 34 kg exposure; using the electronic-recoil spectrum, and measured light yield for low-energy ERs (LB et al., PRD 87, 2013; arXiv:1303.6891)

XENON, Phys. Rev. D 90, 062009 (2014)

Example: Galactic axion-like particles with XENON100

Look for ALPs via their couplings to electrons, g_{Ae}, through the axio-electric effect

Expect line feature at ALP mass

Assume $\rho_0 = 0.3 \,\mathrm{GeV/cm}^3$

$$\phi_A = c\beta_A \times \frac{\rho_0}{m_A}$$

$$R \propto g_{Ae}^2$$

 XEON100: based on 224.6 live days x 34 kg exposure; using the electronic-recoil spectrum, and measured light yield for low-energy ERs (LB et al., PRD 87, 2013; arXiv:1303.6891)

XENON, Phys. Rev. D 90, 062009 (2014)

What is the origin of the DAMA signal?

Possible explanation: a combination of neutrinos and muons

Solar ⁸B neutrino- and atmospheric muon-induced neutrons

Combined phase of muon and neutrino components*: good fit to the data

Jonathan Davis, PRL 113, 081302 (2014)

*Muons: flux correlated with T of atmosphere; period is ok but phase is 30 d too late *Neutrinos: flux varies with the Sun-Earth distance; period is ok but phase peaks in early Jan

The DAMA/LIBRA Experiment

Figure 6: DAMA residuals (blue) and stratospheric temperature residuals $\Delta T_{eff}/T_{eff}$ (green), in percent from the respective baselines.

Kfir Blum, arXiv:1110.0857

The DAMA/LIBRA Experiment

- Annual modulation: significance is 9-sigma; 1 2% effect in bin count rate
- The effect appears only in lowest energy bins
- The origin of the time variation in the observed rate is still unclear
 - motion of the Earth-Sun system through the WIMP halo?
 - environmental effects?
 - ➡ other observables (muon flux, temperature, radon levels etc) vary with the season

