XPS SPECTROSCOPY

Rosanna Larciprete CNR-ISC and LNF-INFN

Surface science

Surface science

Chemical composition of a surface Surface reactions (oxidation, catalysis) Surface diffusion Surface states Epitaxy, thin film growth, self-assembly of nanostructures

graphene

Surface science

Chemical composition of a surface Surface reactions (oxidation, catalysis) Surface diffusion Surface states Epitaxy, thin film growth, self-assembly of nanostructures

Photoelectric effect

 E_{kin} does not depend on the intensity of the photon beam

Photoelectric effect

The work function ϕ is the energy needed to to remove an electron from a solid to a point in the vacuum immediately outside the solid surface

Element Work Function(eV) Aluminum4.08 Beryllium 5.0 Cadmium 4.07 Calcium 2.9 Carbon 4.81 Cesium 2.1 5.0 Cobalt 4.7 Copper Gold 5.1 4.5 Iron 4.14 l ead Magnesium Mercury 4.5 Nickel 5.01 Niobium 4.3 Potassium Platinum 6.35 Selenium 5.11 Silver 4.73 Sodium 2.28 Uranium 3.6 Zinc 4.3

3.68

2.3

The photoemission process

$$E_{Kin} = hv - E_{B} - \phi$$

Atomic energy levels

XPS spectrum

XPS spectrum

Binding energy (eV)

1s² 2s²2p⁶ 3s²3p⁶3d¹⁰ 4s¹

Photoionization cross section

Core level binding energies

			К	L-I	L-II	L-III	M-I	M-II	M-III	M-IV	M-V
			1s	2s	2p1/2	2p3/2	3s	3p1/2	3p3/2	3d3/2	3d5/2
1		Н	13.6								
2	-	He	24.6*								
3		Li	54.7*								
4	-	Be	111.5*								
5		В	188*								
6	;	С	284.2*								
7	,	N	409.9*	37.3*							
8	}	0	543.1*	41.6*							
9		F	696.7*								
1	0	Ne	870.2*	48.5*	21.7*	21.6*					
1	1	Na	1070.8+	63.5+	30.4+	30.5*					
1	2	Mg	1303.0+	88.6*	49.6+	49.21					
1	3	A	1559	117.8*	72.9*	72.5*					
1	4	Si	1839	149.7*b	99.8*	99.2*					
1	5	Ρ	2145.5	189*	136*	135*					
1	6	S	2472	230.9	163.6*	162.5*					
1	7	Cl	2822	270*	202*	200*					
1	8	Ar	3205.9*	326.3*	250.6+	248.4*	29.3*	15.9*	15.7*		
1	9	K	3608.4*	378.6*	297.3*	294.6*	34.8*	18.3*	18.3*		
2	0	Са	4038.5*	438.4+	349.7+	346.2+	44.3+	25.4+	25.4+		
2	21	Sc	4492	498.0*	403.6*	398.7*	51.1*	28.3*	28.3*		
2	2	Ti	4966	560.9+	460.2+	453.8+	58.7+	32.6+	32.6+		
2	23	V	5465	626.7+	519.8+	512.1+	66.3+	37.2+	37.2+		
2	.4	Cr	5989	696.0+	583.8+	574.1+	74.1+	42.2+	42.2+		
2	25	Mn	6539	769.1+	649.9+	638.7+	82.3+	47.2+	47.2+		
2	.6	Fe	7112	844.6+	719.9+	706.8+	91.3+	52.7+	52.7+		
2	.7	Со	7709	925.1+	793.2+	778.1+	101.0+	58.9+	59.9+		
2	8	Ni	8333	1008.6+	870.0+	852.7+	110.8+	68.0+	66.2+		
2	.9	Cu	8979	1096.7+	952.3+	932.7	122.5+	77.3+	75.1+		
3	0	Zn	9659	1196.2*	1044.9*	1021.8*	139.8*	91.4*	88.6*	10.2*	10.1*
3	1	Ga	10367	1299.0*b	1143.2+	1116.4+	159.51	103.5+	100.0+	18.7+	18.7+
3	2	Ge	11103	1414.6*b	1248.1*b	1217.0*b	180.1*	124.9*	120.8*	29.8*	29.2*
3	3	As	11867	1527.0*b	1359.1*b	1323.6*b	204.7*	146.2*	141.2*	41.7*	41.7*
3	4	Se	12658	1652.0*b	1474.3*b	1433.9*b	229.6*	166.5*	160.7*	55.5*	54.6*
3	5	Br	13474	1782*	1596*	1550*	257*	189*	182*	70*	69*

XPS spectrum

Auger process

What do we need?

- Ultra High Vacuum
- X-ray source
- Electron energy analyser
- Data acquisition system

X-ray source

Mg Kα 1253.6 eV **Al** Kα 1486.7 eV

XPS spectrum

Quantitative analysis

Quantitative analysis

Photoionization Cross sections

C 1s 0.02 Ca 3s 0.0068 P 2s 0.023

Electron escape depth

 $P(d) = exp (-d/\lambda)$

 λ = inelastic electron mean free path

 λ depends on the electron kinetic energy

Electron escape depth

 $P(d) = exp(-d/\lambda)$

 λ = inelastic electron mean free path

λ depends on the electron kinetic energy

Electron escape depth

Surface sensitivity

 $Rh3d_{5/2}$ Binding energy (eV)

Chemical shift

Synchrotron radiation

ELETTRA Trieste

 λ = 1486.6 eV Δ E = 0.9 meV

 λ = 130 eV Δ E = 50 meV

(2x1) reconstruction

hv=130 eV

Si(001) (2x1)

