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Frederick William Herschel
(1738-1822)

was born in Hanover, Germany
but emigrated to Britain at

age 19, where he became well
known as both a musician

and an astronomer.

Fig. 1. Herschel’s first experiment: A, B —the small stand, 1,2.3 —the

thermometers upon it, C,D — the prism at the window, E — the spec-

trum thrown upon the table, so as to bring the last quarter of an inch

of the read colour upon the stand (after Ref. 1). Inside Sir Frederick

William Herschel (1738—1822) measures infrared light from the sun
— artist’s impression (after Ref. 2).

Herschel became most famous
for the discovery of Uranus in
1781 in addition to two of its
major moons, Titania and
Oberon. He also discovered two
moons of Saturn and infrared
radiation. Herschel is also
known for the twenty-four
symphonies that he composed.




)

0.76

Microwaves

N

Short Wave

Conbmotor
Waves
Radio

Wavelength (in microns)

\
\
\ \

5.6 1000

Infrared

VY (cm1)=1/A (cm)=107/A (nm)




Intensity / (arb. units)

IR radiation sources

.
i

10 Fultraviolet | visible | infrared
1 ]
L
L

oL s P T ST N S T T ===
1.0 2.0
Wavelength & (lm)

3.0

Black body radiation, thermal source
Plank spectral distribution

Photon Energy hv (eV)
103 102 10! 10°

Visible

3000 K Blackbody }

Radiant Power P (nW) [100 mA, 50 mrad]
S

10° 10! 102 103 104
Wavelength A (nm)

Synchrotron radiation: the emitted
power depends on the particle energy



Synchrotron radiation
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Infrared spectroscopy

Infrared spectroscopy measures the absorption of IR light by a
molecule:
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Wavelength Selection: Monochromators

focusing mirror

collimating mirror

entrance slit ' exit slit

light source detector



Wavelength selection: Michelson interferometer

fixed mirror

collimating mirror

§ -
DQ light source
-

beam splitter .
moving mirror

Y Y

A detector

focusing mirror




Gain Samgple & External

S i.ll."l Background synchronisation
L Liain

! ! !

Beamsapliner | Veloow |
Resolution




OPD=2n% (n=0,+1,#2,..)

OPD= (2n+1)% (n = 0,%1,42,...)

The interferogram gives the amplitude of each frequency contained in the IR
source of radiation:

Fourier transformation

-

Relative Intensity

t—rena [ PR~

Wi

Optical Path Difference Wavenumber cm-1



DTC SRC
* Background (I,) /\/\
DTC SRC
« sample (I) /‘(/W
Tzi- A=log1=—log'1"
Iy T



Infrared detectors

Mercury Cadmium Telluride (MCT) _
Pyroelectrics (DTGS FIR, MIR) Focal Plane Array (FPA) 64x64 pixel

Bolometer (FAR IR)

We shall not attempt to cover the entire field of light detection, which is very broad.
Instead, we shall emphasize those detectors that are most commonly encountered. We
shall also define some of the common terminology.



How detect IR radiation ?

* We have to use a “Photo-Detector” P
A
W
* A photo-detector has to convert : W -
- Incident radiation P, (W/m?) % Out

- Into an output electrical signal

* This electrical signal can be : E P

- Aresistance change AR
In case of a photoconductor or a bolometer

- A photocurrent * |-
In case of a Photo Voltaic detector




Infrared detectors

Thermal

* Bolometers
* Pyroelectrics
 Golay cells

In a thermal detector the incident
radiation is absorbed to change the
material temperature and the resultant
change in some physical property is used
to generate an electrical output. The
signal does not depend upon the
photonic nature of the incident radiation.
Thus, thermal effects are generally
wavelength independent.

Photonic

* Photomultipliers
* Photoresistances
* Photodiodes

In photon detectors the radiation is
absorbed within the material by
interaction with electrons either bound
to lattice atoms or to impurity atoms or
with free electrons. The observed
electrical output signal results from the
changed electronic energy distribution.



Thermal detectors

In a thermal detector the incident radiation is absorbed to change the material
temperature and the resultant change in some physical property (resistivity,
magnetization, pressure) is used to generate an electrical output. The detector is
suspended on legs which are connected to the heat sink. The signal does not depend
upon the photonic nature of the incident radiation. Thus, thermal effects are generally

wavelength independent.
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For a long time, thermal detectors were slow (ms), insensitive, bulky and costly
devices. But with developments of the semiconductor technology, they can be
optimized for specific applications.

Usually, a Bolometer is a thin, blackened flake or slab, whose impedance is
highly temperature dependent.




Photon detectors

In photon detectors the radiation is absorbed within the material by interaction
with electrons either bound to lattice atoms or to impurity atoms or with free
electrons. The observed electrical output signal results from the changed
electronic energy distribution. The thermal transitions compete with the optical
ones, making non-cooled devices very noisy.
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Photon detectors may be further subdivided into the
following groups:

e Photoconductive. The electrical conductivity of the material changes as a
function of the intensity of the incident light. Photoconductive detectors are
semiconductor materials. They have an external electrical bias voltage.

e Photovoltaic. These detectors contain a p-n semiconductor junction and are
often called photodiodes. A voltage is self generated as radiant energy strikes the
device. The photovoltaic detector may operate without external bias voltage. A
good example is the solar cell used on spacecraft and satellites to convert the
sun’s light into useful electrical power.

e Photoemissive. These detectors use the photoelectric effect, in which incident
photons free electrons from the surface of the detector material. These devices
include vacuum photodiodes, bipolar phototubes, and photomultiplier tubes.




Photodiodes

When a photon strikes a semiconductor, it can promote an electron from the valence
band (filled orbitals) to the conduction band (unfilled orbitals) creating an electron(-) -
hole(+) pair. The concentration of these electron-hole pairs is dependent on the amount
of light striking the semiconductor, making the semiconductor suitable as an optical
detector.

There are two ways to monitor the concentration of electron-hole pairs. In photodiodes,
a voltage bias is present and the concentration of light-induced electron-hole pairs
determines the current through semiconductor. Photovoltaic detectors (zero bias)
contain a p-n junction, that causes the electron-hole pairs to separate to produce a
voltage that can be measured. Photodiode detectors are not as sensitive as PMTs but
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PMTs and the photoelectric effect

In a photomultiplier tube (PMT), when an incident photon hits the entrance
photocathode, a primary electron is produced, ejected, and further collected and
amplified by a series of dynodes. The resulting current generated at the exit anode is
proportional in amplitude to the incident light intensity. Due to high internal gain (10° to
107 electrons for each photon hitting the first cathode), PMTs are very sensitive
detectors, useful in low intensity applications such as fluorescence spectroscopy.

Photocathode
Focusing electrode  Photomultiplier Tube (PMT)

lonization track / /

High energy | .
photon

Low energf photons /
i f 2 1) A \ i
Scintillator ~ Primary  Secondary Dynode  Anode
electron electrons

Connector
pins




Figures of merit

* Responsivity: measures the input—output gain of a
detector system.

R = Vout _ Vs

Rt HAz W]

* The responsivity can be represented as a function of the wavelength
- Which will define a band where the device is active

I\




Because thermal detectors rely on only the amount of heat energy delivered,
their response is independent of wavelength.

Photon

gstapr \\‘

Tharmal
datector

Responsea

Wanalangth

W

The wavelength response of photon detectors shows a long-wavelength
cutoff. When the wavelength is longer than the cutoff wavelength, the
photon energy is too small to excite an electron to the conduction band and
the response of the detector drops to zero.



* NEP (Noise Equivalent Power)

is @ measure of the sensitivity of a photodetector or detector system. This is defined as the
radiant power that produces a signal voltage (current) equal to the noise voltage (current)
of the detector. Since the noise is dependent on the bandwidth of the measurement, that
bandwidth must be specified.

Noise

NEP = %
Responsivity [W/Hz "]

NEP depends on the detector area!

* Detectivity D* = N—“g [cm x HzY/2/W]

The importance of D* is that this figure of merit permits comparison of detectors of
the same type, but having different areas.
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Speed of the detector response to changes in light intensity

If a constant source of light energy is instantaneously turned on and irradiates a photodetector, it
will take a finite time for current to appear at the output of the device and for the current to reach a
steady value. If the same source is turned off instantaneously, it will take a finite time for the current
to decay back to its initial zero value. The term response time generally refers to the time it takes the
detector current to rise to a value equal to 63.2% (1- 1/e) of the steady-state value reached after a
relatively long period of time. The recovery time is the time photocurrent takes to fall to 36.8% of
the steady-state value when the light is turned off instantaneously.

Because photodetectors often are used for detection of fast pulses, a more important term, called
rise time, is often used to describe the speed of the detector response. Rise time is defined as the
time difference between the points at which the detector has reached 10% of its peak output and
the point at which it has reached 90% of its peak response, when it is irradiated by a very short pulse
of light. The fall time is defined as the time between the 90% point and the 10% point on the trailing
edge of the pulse waveform. This is also called the decay time. We note that the fall time may be
different numerically from the rise time.



Linearity of the detector response

Another important characteristic of detectors is their linearity. Photodetectors are
characterized by a response that is linear with incident intensity over a broad range,
perhaps many orders of magnitude.

Noise will determine the lowest level of incident light that is detectable. The upper limit
of the input/output linearity is determined by the maximum current that the detector
can handle without becoming saturated. Saturation is a condition in which there is no
further increase in detector response as the input light is increased.

Linearity may be quantified in terms of the maximum percentage deviation from a
straight line over a range of input light levels. For example, the maximum deviation
from a straight line could be 5% over the range of input light from 10-12 W/cm? to 104
W cm?. One would state that the linearity is 5% over eight orders of magnitude in the
input.



Focal plane arrays — revolution in imaging systems

The term “focal plane array” (FPA) refers to an assemblage of individual detector
picture elements (“pixels”) located at the focal plane of an imaging system
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Chemical imaging with FPA detector
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Numerical aperture

The Concept of Numerical Aperture for Objectives and Condensers
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Condenser-|
Aperture
Incident ngle
Illumination —
COndenser—e
(a) (b)
Figure 1

In optics, the numerical aperture (NA) of an optical system is a dimensionless
number that characterizes the range of angles over which the system can accept
or emit light.

Numerical Aperture (NA) = n (sin o)




The pixel resolution

\ 4

\ 4

Microscope optics
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The lateral resolution
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The Rayleigh criterion is the generally accepted criterion for the minimum
resolvable detail - the imaging process is said to be diffraction-limited when
the first diffraction minimum of the image of one source point coincides with

the maximum of another

The Rayleigh Criterion

Airy Disk 1 Airy Disk 2

Intensity

11 Figure 4



Airy Disk Separation and the Rayleigh Criterion
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Imaging / Mapping Spectrum
from v, to v, at pixel (n;, m;)
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Anticipated evolution of IR technology in the near future

The future applications of IR detector systems require:

e higher pixel sensitivity,

e further increase in pixel density to above 106 pixels,

e cost reduction in IR imaging array systems through the use of less
cooling sensor technology combined with integration of detectors and
signal-processing functions (with much more on-chip signal processing),
e improvement in the functionality of IR imaging arrays through
development of multispectral sensors.
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