Determination of level widths in ¹⁵N using nuclear resonance fluorescence

T. Szücs^{1,2}, D. Bemmerer¹, A. Caciolli³, Zs. Fülöp², R. Massarczyk^{1,4}, C. Michelagnoli⁵, T. P. Reinhardt⁴, R. Schwengner¹, M. P. Takács^{1,4}, C. A. Ur⁶, A. Wagner¹, L. Wagner^{1,4}

¹ Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
² Institute for Nuclear Research (MTA Atomki), Debrecen, Hungary
³ INFN Sezione di Padova, Padova, Italy
⁴ Technische Universität Dresden, Dresden, Germany
⁵ Grand Accélérateur National d'Ions Lourds (GANIL), Caen, France
⁶ Extreme Light Infrastructure - Nuclear Physics (ELI-NP), Magurele, Romania

Motivation

- ¹⁵N is the mirror of the astrophysically important ¹⁵O -
- ¹⁵O is the product of the bottleneck reaction of the CNO cycle

Tamás Szücs et al. I Institute of Radiation Physics I t.szuecs@hzdr.de I www.hzdr.de

Doppler shift study of the lifetime of the 6.792 MeV level in ¹⁵O

- Level populated in d(¹⁴N,n)¹⁵O reaction
- Difficult analysis, expected lifetime ~1 fs
- ¹⁵N levels were also populated in the reaction

Member of the Helmholtz Association

Motivation

- Recent preliminary level lifetimes from a DSAM (Doppler Shift Attenuation Method) measurement are in contradiction with the literature values
- The literature values are based mostly on one NRF (Nuclear Resonance Fluorescence) measurement [1] from 1981

E _x / MeV	Level width / eV	
	NRF [1]	DSAM [2]
8.31	0.3 ± 0.2	0.108 ± 0.018
10.06	6.3 ± 0.4	0.13 ± 0.02

- Altogether 9 level with measurable width are below the p-separation energy for some cases limited precision (60% - 100% error)

[1] R. Moreh *et al.*, Physical Review C **23**, 988 (1981)

[2] C. Michelagnoli, *The lifetime of the 6.79 MeV state in* ¹⁵O *as a challenge for nuclear astrophysics and* γ*-ray spectroscopy: a new DSAM measurement with the AGATA Demonstrator array,* Università degli Studi di Padova (2013)

The NRF technique

- Nuclear level excited by γ-rays
- $-\gamma$ -rays following the de-excitation are detected
- The photon scattering cross section, thus the count rate is proportional to the level width

$$I_{\sigma}(0 \to E_x \to E_f) = \frac{2J_x + 1}{2J_0 + 1} \left(\frac{\pi\hbar c}{E_x}\right)^2 \frac{\Gamma_0 \Gamma_f}{\Gamma}$$

$$I_{\sigma}(0 \to E_x \to E_f) \sim b_0 b_f \Gamma$$

$$I_{\sigma}(0 \rightarrow E_x \rightarrow 0) \sim b_0^2 \Gamma$$

Member of the Helmholtz Association

ELBE

Elektronen Linearbeschleuniger für Strahlen hoher Brillanz und niedriger Emittanz

Member of the Helmholtz Association

γELBE

- 4 HPGe with BGO anticompton shield
- 2 angles: 127° and 90°

Member of the Helmholtz Association

γELBE

- 4 HPGe with BGO anticompton shield
- 2 angles: 127° and 90°

Bremsstrahlung energy distribution from Si detectors

- The endpoint was determined from deuteron breakup -
- The energy distribution was calculated by the equation given in L. I. Schiff, Physical Review 83, 252 (1951)

Tamás Szücs et al. I Institute of Radiation Physics I t.szuecs@hzdr.de I www.hzdr.de

Bremsstrahlung flux

- The absolute flux was determined from the known level widths of ¹¹B.

Targets

- Solid nitrogen compounds enriched in ¹⁵N
 - Ammonium-nitrate (NH₄NO₃): 98% enrichment
 - Ammonium-chloride (NH₄Cl): 99% enrichment
- Two pills from each material
 - ~0.5g and ~1.5g
- A ¹¹B pill was always included
 - 0.2g; 99.5% enrichment

Targets

Ammonium-chloride (NH₄Cl):

– Pro

- Not hygroscopic
- Con
 - Less N per grams
 - Cl may cause addition peaks in the spectra

Ammonium-nitrate (NH₄NO₃):

– Pro

• More N per grams

– Con

• Slightly hygroscopic

Preliminary results

[1] R. Moreh et al., Physical Review C 23, 988 (1981)

[2] C. Michelagnoli, *The lifetime of the 6.79 MeV state in* ¹⁵O *as a challenge for nuclear astrophysics and* γ*-ray spectroscopy: a new DSAM measurement with the AGATA Demonstrator array,* Università degli Studi di Padova (2013)

Member of the Helmholtz Association

Summary

- Level widths in ¹⁵N have been measured
 - NRF technique
 - Bremsstrahlung
 - Solid N compounds, enriched in ¹⁵N
 - 4 HPGe detectors with BGO anticompton shields
- The results supports the old NRF experiment from 1981 against the new preliminary DSAM results
- The obtained level widths have higher precision than the previous ones

Thank you for your attention!

