Jet (de)coherence in PbPb collisions at the LHC

Konrad Tywoniuk

01 Apr 2014, Frascati

It's april, fool!

A taste of QGP

- deconfinement
- restoration of chiral symmetry
- asymptotic freedom
 - high T: gas of free quarks & gluons
 - intermediate T: strongly coupled system

What are the relevant degrees of freedom?

A taste of QGP

- deconfinement
- restoration of chiral symmetry
- asymptotic freedom
 - high T: gas of free quarks & gluons
 - intermediate T: strongly coupled system

What are the relevant degrees of freedom?

A taste of QGP

- deconfinement
- restoration of chiral symmetry
- asymptotic freedom
 - high T: gas of free quarks & gluons
 - intermediate T: strongly coupled system

What are the relevant degrees of freedom?

Azimuthal asymmetry

Azimuthal asymmetry

MUSIC B. Schenke, S. Jeon, C. Gale, Phys. Rev. C82, 014903 (2010); Phys.Rev.Lett.106, 042301 (2011)

- space anisotropy → momentum anisotropy
- imprint of quantum fluctuations!
- equilibration → hydrodynamical flow!

$$v_n = \langle \cos \left[n(\phi - \Psi_n) \right] \rangle$$

The QGP flows

- transport coefficients can be found
- hierarchy of v_n coefficients consistent with almost perfect liquid

$$0.07 \le \eta/s \le 0.43$$

Luzum, Ollitrault et al.

 higher harmonics are more sensitive to viscosity and granularity

Bulk observables: An almost perfect liquid of quark-gluon matter is formed in the collision.

Can we explore this state with other observables?

Hard probes

The T-shirt plot

- jet quenching :: key discovery of RHIC
- color-less probes unmodified baseline ok!
- universal suppression at high-p_T

Bjorken '82 Gyulassy, Plumer, Wang 1995 Baier, Dokshitzer, Mueller, Peigne, Schiff 1996

Gyulassy, Levai, Vitev 1997

Jets

- what we see as sprays of particles in the detector are originating from one parton
- a way to probe the quarks and gluons
- defining a jet is a contract between theory and experiment :: jet algorithms

Two main features

Resummation of double logarithms + single log corrections

$$\frac{1}{p \cdot k} = \frac{1}{E\omega(1 - \cos\theta)} \Rightarrow \alpha_s \int_{Q_0}^{E} \frac{d\omega}{\omega} \int_{\omega/Q_0}^{1} \frac{d\theta}{\theta} \sim \alpha_s \log^2 \frac{E}{Q_0}$$

Two main features

Resummation of double logarithms + single log corrections

$$\frac{1}{p \cdot k} = \frac{1}{E\omega(1 - \cos\theta)} \implies \alpha_s \int_{Q_0}^E \frac{d\omega}{\omega} \int_{\omega/Q_0}^1 \frac{d\theta}{\theta} \sim \alpha_s \log^2 \frac{E}{Q_0}$$

Color coherence = angular ordering

QCD jet in vacuum

- probabilistic picture, factorization
- jet scales :: perturbative
- ullet angular ordering :: essential for small imes
- MLLA + LPHD (K factor)
- good description

How do jets propagate in the background created in heavy-ion collisions?

Modified jets l

• PbPb $\sqrt{s}_{NN} = 2.76 \text{ TeV}$

PYTHIA+HYDJET

[CMS Coll. arXiv:1202.5022]

- jets are back-to-back
- large dijet energy asymmetry
 - recall: jets are suppressed (factor ~2)

Modified jets II

[CMS Coll. HIN-12-013]

Modified jets III

10-15 %of the jetenergy isfound atΔR>0.8

QCD jet in medium

New scales:

$$M_{\perp} \equiv E \, \theta_{jet}$$
 $Q_0 \sim \Lambda_{\rm QCD}$

+
$$Q_s \equiv \sqrt{\hat{q}L} \equiv m_D \sqrt{N_{\rm scat}}$$

$$r_{\perp jet}^{-1} \equiv (\theta_{jet}L)^{-1}$$

Jet scales in the medium

$$\Delta_{\rm med} \approx 1 - \exp[-\frac{1}{12} Q_s^2 r_\perp^2]$$

$$r_{\perp} = heta_{m{q}ar{m{q}}} L$$

the decoherence parameter

 $Q_s^2 = \hat{q}L$ characteristic momentum scale of the medium

$$k_{\perp} < Q_{\rm hard}$$

Mehtar-Tani, Salgado, KT 1009.2965; 1102.4317; 1112.5031; 1205.57397 Casalderrrey-Solana, lancu 1105.1760 Onset of decoherence

$$\Delta_{\mathrm{med}}
ightarrow 0$$
 Coherence $\Delta_{\mathrm{med}}
ightarrow 1$ Decoherence

In $\omega \rightarrow 0$ limit, only vacuum-like:

$$dN_q^{\rm tot} = \frac{\alpha_s C_F}{\pi} \frac{d\omega}{\omega} \frac{\sin\theta}{1 - \cos\theta} \left[\Theta(\cos\theta - \cos\theta_{q\bar{q}}) + \Delta_{\rm med} \Theta(\cos\theta_{q\bar{q}} - \cos\theta) \right] .$$

$$Q_{\text{hard}} = \max \left(r_{\perp}^{-1}, Q_s \right)$$

 $k_{\perp} < Q_{\text{hard}}$

• decoherence opens phase space at large angles $\theta_{max} = Q_{hard}/\omega$

 $Q_{
m hard}$

 $\Theta_{qar{q}}$

modification of angular ordering

Resolving jet substructure

In terms of angles:

$$\Delta_{\text{med}} = 1 - e^{-\Theta_{\text{jet}}^2/\theta_c^2}$$

$$heta_c = 1/\sqrt{\hat{q}L^3}$$
 jet definition ($\Theta_{
m jet}$ =R)!

Coherent inner 'core'

- branchings occurring inside the medium with $\theta < \theta_{\text{c}}$
- hard modes (with $k_{\perp}>Q_s$)
- the core interacts w/ medium coherently
- sensitive to energy loss

A large fraction of the jets contain 90% of their energy within a coherent core of Θ ~0.1!

Casalderrrey-Solana, Mehtar-Tani, Salgado, KT 1210.7765 Perez-Ramos, Mathieu PLB 718 (2013) 1421 [arXiv:1207.2854]; Perez-Ramos, Renk arXiv:1401.5283

Resolving jet substructure

In terms of angles:

$$\Delta_{\rm med} = 1 - e^{-\Theta_{\rm jet}^2/\theta_c^2}$$

'Soft edge' of the jet

- softer components of the jet occupy the full angular range
 - do not carry a large energy fraction!
- will be sensitive to effects of decoherence
- modification of jet fragmentation function
 - sensitive to the angle Θc

Mehtar-Tani, KT 1401.8293

Factorization of radiation

- coherence :: leading contribution to inclusive spectra at high energies
- separation in angles :: only the total charge radiates
- allows to separate the treatment of the two different processes :: jet calculus

$$D_{\text{med}}^{\text{coh}}(x;Q,L) = \int_{x}^{1} \frac{\mathrm{d}z}{z} D^{\text{vac}}\left(\frac{x}{z};Q\right) D_{q}^{\text{med}}(z,p_{\perp},L)$$

small angle, vacuumlike evolution medium induced, large angle radiation

Mehtar-Tani, KT 1401.8293

Induced radiation

- any coherent color current in the medium experiences interactions :: stimulates radiation/new color currents
- cascade in the medium

Baier, Dokshitzer, Mueller, Peigné, Schiff (1997-2000), Zakharov (1996), Wiedemann (2000), Gyulassy, Levai, Vitev (2000), Arnold, Moore, Yaffe (2001)

Induced radiation

 $\Delta x_{\perp} = k_{\mathrm{br}}^{-1}$ Multiple scattering in the medium:

$$\begin{cases} t_{\rm br} = \lambda_{\rm mfp} N_{\rm coh} \\ k_{\rm br}^2 = \mu^2 N_{\rm coh} \end{cases} \qquad \begin{cases} t_{\rm br} = \sqrt{\omega/\hat{q}} \\ k_{\rm br}^2 = \sqrt{\hat{q}\omega} \end{cases}$$

$$t_{\rm br} = \sqrt{\omega/\hat{q}}$$
 $k_{\rm br}^2 = \sqrt{\hat{q}\omega}$

$$\lambda_{\mathrm{mfp}}
ightarrow t_{\mathrm{br}}$$
 :: Landau-Pomeranchuk-Migdal effect

Bethe-Heitler regime

$$t_{\rm br} \sim \lambda_{\rm mfp}$$

$$\omega_{\rm BH} = \lambda^2 \hat{q} \sim \lambda m_D^2$$

Factorization regime

$$t_{\rm br} \sim L$$

$$\omega_c = \hat{q}L^2$$

LPM regime

$$\omega_{\rm BH} \ll \omega \ll \omega_c$$

Baier, Dokshitzer, Mueller, Peigné, Schiff (1997-2000), Zakharov (1996), Wiedemann (2000), Gyulassy, Levai, Vitev (2000), Arnold, Moore, Yaffe (2001)

Medium cascade

Multiple emission regime

- independent emission
- possible in large media
- very soft radiation at large angles!

$$\omega_{\rm BH} \ll \omega \ll \bar{\alpha}^2 \omega_c$$

$$\theta \gg \theta_{\rm br} \equiv (\hat{q}/\omega^3)^{1/4}$$

Blaizot, Dominguez, Iancu, Mehtar-Tani 1209.4585

Medium cascade

Multiple emission regime

- independent emission
- possible in large media
- very soft radiation at large angles!

$$\omega_{\rm BH} \ll \omega \ll \bar{\alpha}^2 \omega_c$$

$$\theta \gg \theta_{\rm br} \equiv (\hat{q}/\omega^3)^{1/4}$$

Blaizot, Dominguez, Iancu, Mehtar-Tani 1209.4585

Evolution equation for D^{med}:

- probabilistic interpretation
- turbulent flow: no intrinsic accumulation of energy
- effective in transporting sizeable energy to large angles

Jeon, Moore hep-ph/0309332; Baier, Mueller, Schiff, Son hep-ph/0009237 Blaizot, Iancu, Mehtar-Tani 1301.6102

Jet suppression

$$R_{AA}^{\text{jet}} \equiv \frac{d^2 N_{\text{Pb-Pb}}^{\text{jet}}(p_{\perp})/d^2 p_{\perp}}{T_{\text{AA}} d^2 \sigma_{\text{p-p}}^{\text{jet}}(p_{\perp})/d^2 p_{\perp}}$$

Medium spectrum:

$$\frac{d^2 N_{\text{Pb-Pb}}^{\text{jet}}(p_{\perp})}{T_{\text{AA}} d^2 p_{\perp}} \simeq \int_0^1 \frac{dx}{x} D_q^{\text{med}}\left(x, \frac{p_{\perp}}{x}, L\right) \frac{d^2 \sigma_{\text{p-p}}^{\text{jet}}\left(\frac{p_{\perp}}{x}\right)}{d^2 p_{\perp}},$$

Vacuum spectrum: $\frac{d^2 \sigma_{\text{p-p}}^{\text{Jet}}}{d^2 n_{\perp}} \propto p_{\perp}^{-n}$

$$\frac{d^2 \sigma_{\rm p-p}^{\rm jet}}{d^2 p_{\perp}} \propto p_{\perp}^{-n}$$

- governed by 'core' interactions!
- assuming quark jets
- allows to fix ω_c and ω_{BH} (fixing L = 2.5 fm)
- low-p_T sensitive to sub-leading resolved subjets

 $Q_s = 3.6 \text{ GeV}$

Momentum broadening

Average broadening ($x\sim I$, $\theta < \theta_c$):

$$D(x, \theta < \Theta_{jet}) = \int^{\Theta_{jet}} \frac{d^2 \mathbf{k}}{(2\pi)^2} \mathcal{P}(\mathbf{k}) D(x),$$
$$= \left[1 - \exp\left(-\frac{x^2 M_T^2}{Q_s^2}\right) \right] D(x)$$

- energy is transported via branching!
- little energy is recovered up to large cone angles, 10-15 % is missing
- jet axis :: $\Delta\Theta$ jet ~ Q_s/E ~ 0.036
- sensitive to Bethe-Heitler regime!

Mehtar-Tani, KT 1401.8293

Decoherence

Going beyond the inclusive jet spectrum, the assumption of fully coherent jets fails miserably!

$$\Theta_{\rm jet} = 0.3$$

$$\Theta_c = 0.08$$

$$\Delta D_{\text{med}}^{\text{decoh}}(x; Q, \hat{q}, L) = \int_{\omega}^{E} \frac{d\omega'}{\omega'} \int_{Q_0/\omega}^{\Theta_{\text{jet}}} \frac{d\theta'}{\theta'}$$

Calculate the decoherence (antiangular) contribution from 2nd emission in DLA w/ running coupling.

$$D_{\text{med}}^{\text{jet}}(x;Q,L) = D_{\text{med}}^{\text{coh}}(x;Q,L) + \Delta D_{\text{med}}^{\text{decoh}}(x;Q,L)$$

Fragmentation function

- vacuum baseline reproduced by MLLA :: valid close to the humpbacked plateau
- allow the jet energy to vary (due to energy loss)
- coherent jet quenching important for intermediate \(\ell \)
- decoherence plays main role at large \(\langle \) (small x)

Summary

- QGP created in heavy-ion collisions has many unforeseen and interesting properties
 - challenges our understanding of QCD
- - resolved sub-jets are a consequence of color transparency (pQCD)
- separation of scales (angles)
 - jet 'core' :: energy loss
 - jet 'edge' :: modification of fragmentation function
 - large angle :: transport in the medium

backup

Transport coefficient

Elastic scattering kernel:

$$\mathcal{V}_{\mathrm{HTL}}^2(\boldsymbol{q}) = rac{m_D^2}{\boldsymbol{q}^2(\boldsymbol{q}^2 + m_D^2)}$$

$$\hat{q}(t) \equiv \alpha_s n(t) \int_{|\boldsymbol{q}| < q^*} \frac{d\boldsymbol{q}^2}{2\pi} \, \boldsymbol{q}^2 \mathcal{V}^2(\boldsymbol{q})$$

- diffusion in k_T
- calculable in thermal pQCD
- radiative corrections

$$\hat{\mathbf{q}} = 5.1 \text{ GeV}^2/\text{fm}$$

Liou, Mueller, Wu NPA916 (2013); Blaizot, Dominguez, Iancu, Mehtar-Tani arxiv: 1311.5823

Jet probabilistic evolution

$$d\langle \mathcal{P}_A^{BC} \rangle_{\varphi} = \frac{\alpha_s(k_{\perp}^2)}{2\pi} P_A^{BC}(z) dz \, \frac{d\theta}{\theta} \Theta \left(\theta_{fg} - \theta_{sf} \right)$$

- probability of A→BC splitting
- Altarelli-Parisi splitting function
- Markovian (branching) process

Jet probabilistic evolution

$$d\langle \mathcal{P}_A^{BC} \rangle_{\varphi} = \frac{\alpha_s(k_\perp^2)}{2\pi} P_A^{BC}(z) dz \, \frac{d\theta}{\theta} \Theta \big(\theta_{fg} - \theta_{sf} \big) \quad \text{o Altarelli-Parisi splitting function}$$

- probability of A→BC splitting
- Markovian (branching) process

- resummation of multiple branchings
- angular ordering built in
- basis for MC models

Jet probabilistic evolution

$$d\langle \mathcal{P}_{A}^{BC} \rangle_{\varphi} = \frac{\alpha_{s}(k_{\perp}^{2})}{2\pi} P_{A}^{BC}(z) dz \, \frac{d\theta}{\theta} \Theta \left(\theta_{fg} - \theta_{sf} \right)$$

- probability of A→BC splitting
- Altarelli-Parisi splitting function
- Markovian (branching) process

- resummation of multiple branchings
- angular ordering built in
- basis for MC models

Sudakov form factor

probability of no splitting of particle A between two angles/momenta (scales)

$$\Delta_A(\theta_1, \theta_0) = \exp\left[-\int_{\theta_0}^{\theta_1} \int_0^1 \sum_{BC} d\langle \mathcal{P}_A^{BC} \rangle_{\phi}\right]$$

The medium scale

How is the medium resolved

- medium fluctuates with typical transverse wave length Q_s⁻¹
- zero color on average, $\lambda > Q_s^{-1}$
- resolved by $\lambda < Q_s^{-1}$

$$Q_s^2(t) = \hat{q}t$$

The medium scale

$$Q_s^2(t) = \hat{q}t$$

How is the medium resolved

- medium fluctuates with typical transverse wave length Q_s⁻¹
- zero color on average, $\lambda > Q_s^{-1}$
- resolved by $\lambda < Q_s^{-1}$

The medium scale

 $Q_s^2(t) = \hat{q}t$

How is the medium resolved

- medium fluctuates with typical transverse wave length Q_s⁻¹
- zero color on average, $\lambda > Q_s^{-1}$
- resolved by $\lambda < Q_s^{-1}$

What probes the medium?

 $Q_{\mathrm{hard}} = \max\left(r_{\perp}^{-1}, Q_{s}\right)$

 $k_{\perp} < Q_{\rm hard}$

One emitter

Two emitters

vacuum coherence

(at large angles)

"medium-induced"

weak AAO,

radiation as total charge

AO completely broken, radiation up to k

radiation as independent charges

→ importance of medium-resolved sub-jets!