G.Gratta Physics Dept Stanford University

Wire signals vs time

25989 <u>G</u>o

Wire Channel

635 Event # [

-200

Double-beta decay:

a second-order process only detectable if first order beta decay is energetically forbidden

Candidate nuclei with Q>2 MeV

Candidate	Q (MeV)	Abund. (%)
⁴⁸ Ca→ ⁴⁸ Ti	4.271	0.187
⁷⁶ Ge→ ⁷⁶ Se	2.040	7.8
⁸² Se→ ⁸² Kr	2.995	9.2
⁹⁶ Zr→ ⁹⁶ Mo	3.350	2.8
¹⁰⁰ Mo→ ¹⁰⁰ Ru	3.034	9.6
¹¹⁰ Pd→ ¹¹⁰ Cd	2.013	11.8
¹¹⁶ Cd→ ¹¹⁶ Sn	2.802	7.5
¹²⁴ Sn→ ¹²⁴ Te	2.228	5.64
¹³⁰ Te→ ¹³⁰ Xe	2.533	34.5
¹³⁶ Xe→ ¹³⁶ Ba	2.479	8.9
$^{150}Nd \rightarrow ^{150}Sm$	3.367	5.6

There are two varieties of $\beta\beta$ decay

2∨ mode: a conventional 2nd order process in nuclear physics Ov mode: a hypothetical process can happen only if: $M_v \neq 0$ $v = \overline{v}$ $|\Delta L| = 2$ $|\Delta (B-L)| = 2$

LNGS, Sapienza, LNF, Feb 2014

There are two varieties of $\beta\beta$ decay

 O_V mode: a hypothetical process can happen only if: $M_v \neq 0$ $v = \overline{v}$ $|\Delta L|=2$ $|\Delta (B-L)|=2$

<u>The two can be separated in a detector with</u> <u>sufficiently good energy resolution</u>

Topology and particle ID are also important to recognize backgrounds

Need very large fiducial mass (tons) of isotopically separated material (except for ¹³⁰Te)

[using natural material typically means that 90% of the source produced background but not signal]

This is expensive and provides encouragement to use the material in the best possible way:

For no bkgnd $\langle m_{\nu} \rangle \propto 1/\sqrt{T_{1/2}^{0\nu\beta\beta}} \propto 1/\sqrt{Nt}$

Candidate	Q (MeV)	Abund. (%)
⁴⁸ Ca→ ⁴⁸ Ti	4.271	0.187
⁷⁶ Ge→ ⁷⁶ Se	2.040	7.8
⁸² Se→ ⁸² Kr	2.995	9.2
⁹⁶ Zr→ ⁹⁶ Mo	3.350	2.8
$^{100}Mo \rightarrow ^{100}Ru$	3.034	9.6
¹¹⁰ Pd→ ¹¹⁰ Cd	2.013	11.8
$^{116}Cd \rightarrow ^{116}Sn$	2.802	7.5
¹²⁴ Sn→ ¹²⁴ Te	2.228	5.64
¹³⁰ Te→ ¹³⁰ Xe	2.533	34.5
¹³⁶ Xe→ ¹³⁶ Ba	2.479	8.9
$^{150}Nd \rightarrow ^{150}Sm$	3.367	5.6

For statistical bkgnd subtraction

$$\langle m_{\nu} \rangle \propto 1/\sqrt{T_{1/2}^{0\nu\beta\beta}} \propto 1/(Nt)^{1/4}$$

Shielding a detector from gammas is difficult because the absorption cross section is small.

Shielding *BB* decay detectors is much harder than shielding Dark Matter ones We are entering the "golden era" of *BB* decay experiments as detector sizes exceed int lengths

How to "organize" an experiment: the source

- High Q value reduces backgrounds and increases the phase space & decay rate,
- Large abundance makes the experiment cheaper
- A number of isotopes have similar matrix element performance

It is very important to understand that a healthy neutrinoless double-beta decay program requires more than one isotope. This is because:

- There could be unknown gamma transitions and a line observed at the "end point" in one isotope does not necessarily imply that Ovßß decay was discovered
- Nuclear matrix elements are not very well known and any given isotope could come with unknown liabilities
- Different isotopes correspond to vastly different experimental techniques
- 2 neutrino background is different for various isotopes (apparently quite small for ¹³⁶Xe)
- The elucidation of the mechanism producing the decay requires the analysis of more than one isotope

The virtues of ¹³⁶Xe in a large TPC

- No need to grow crystals
- Can be re-purified during the experiment
- Noble gas: easy(er) to purify
- Can be easily transferred from one detector to another depending on results and available technology
- Good (although not best) energy resolution coupled with large homogeneous and imagining detector is very powerful
- No long lived Xe isotopes to activate
- ¹³⁶Xe enrichment easier and cheaper:
 - noble gas (no chemistry involved)
 - centrifuge feed rate in gram/s, all mass useful
 - centrifuge efficiency ~ Δm . For Xe 4.7 amu
- Only known case where final state identification appears to be not impossible
 - → eliminate all non-ββ backgrounds, possibly only chance of getting to Normal Hierarchy

• ¹³⁶Xe can be replaced with ^{Nat'l}Xe if a signal is observed!

University of Alabama, Tuscaloosa AL, USA - D. Auty, T. Didberidze, M. Hughes, A. Piepke, R. Tsang University of Bern, Switzerland - S. Delaguis, G. Giroux, R. Gornea, T. Tolba, J-L. Vuilleumier California Institute of Technology, Pasadena CA, USA - P. Vogel Carleton University, Ottawa ON, Canada - V. Basque, M. Dunford, K. Graham, C. Hargrove, R. Killick, T. Koffas, F. Leonard, C. Licciardi, M.P. Rozo, D. Sinclair Colorado State University, Fort Collins CO, USA - C. Benitez-Medina, C. Chambers, A. Craycraft, W. Fairbank, Jr., T. Walton Drexel University, Philadelphia PA, USA - M.J. Dolinski, M.J. Jewell, Y.H. Lin, E. Smith, Y.-R Yen Duke University, Durham NC, USA - P.S. Barbeau IHEP Beijing, People's Republic of China - G. Cao, X. Jiang, L. Wen, Y. Zhao University of Illinois, Urbana-Champaign IL, USA - D. Beck, M. Coon, J. Ling, M. Tarka, J. Walton, L. Yang Indiana University, Bloomington IN, USA - J. Albert, S. Daugherty, T. Johnson, L.J. Kaufman University of California, Irvine, Irvine CA, USA - M. Moe ITEP Moscow, Russia - D. Akimov, I. Alexandrov, V. Belov, A. Burenkov, M. Danilov, A. Dolgolenko, A. Karelin, A. Kovalenko, A. Kuchenkov, V. Stekhanov, O. Zeldovich Laurentian University, Sudbury ON, Canada - B. Cleveland, A. Der Mesrobian-Kabakian, J. Farine, B. Mong, U. Wichoski University of Maryland, College Park MD, USA - C. Davis, A. Dobi, C. Hall, S. Slutsky, Y-R. Yen University of Massachusetts, Amherst MA, USA - T. Daniels, S. Johnston, K. Kumar, A. Pocar, D. Shy University of Seoul, South Korea - D.S. Leonard SLAC National Accelerator Laboratory, Menlo Park CA, USA - M. Breidenbach, R. Conley, A. Dragone, K. Fouts, R. Herbst, S. Herrin, A. Johnson, R. MacLellan, K. Nishimura, A. Odian, C.Y. Prescott, P.C. Rowson, J.J. Russell, K. Skarpaas, M. Swift, A. Waite, M. Wittgen Stanford University, Stanford CA, USA - J. Bonatt, T. Brunner, J. Chaves, J. Davis, R. DeVoe, D. Fudenberg, G. Gratta, S.Kravitz, D. Moore, I. Ostrovskiy, A. Rivas, A. Schubert, D. Tosi, K. Twelker, M. Weber Technical University of Munich, Garching, Germany - W. Feldmeier, P. Fierlinger, M. Marino TRIUMF, Vancouver BC, Canada – J. Dilling, R. Krucken, F. Retière, V. Strickland

Underground location: Waste Isolation Pilot Plant (WIPP) Carlsbad, NM

~1600 meter water equivalent flat overburden

 Relatively low levels of U and Th (<100 ppb in EXO-200 drift)

 Low levels of Rn (~20 Bq/m³)

 Rather convenient access with large conveyance

LNGS, Sapienza, LNF, Feb 2014

Waste Isolation Pilot Plant

Neilson, et al. NIM A 608 (2009) 6875 ä

APDs are ideal for our application: - very clean & light-weight, - very sensitive to VUV QE > 1 at 175nm

Gain set at 100-150 V~1500V ∆V < ±0.5V ∆T < ±1K APD is the driver for temperature stability Leakage current OK cold

Ultra-low activity Cu vessel

 Very light (~1.5mm thin, ~15kg) to minimize materials

•Different parts e-beam welded together

- Field TIG weld(s) to seal the vessel after assembly (TIG technology tested for radioactivity)
- All machining done by in the CR-shielded HEPL building)

Copper vessel 1.37 mm thick
175 kg LXe, 80.6% enr. in ¹³⁶Xe
Copper conduits (6) for:
APD bias and readout cables
U+V wires bias and readout
LXe supply and return
Epoxy feedthroughs at cold and warm doors

•Dedicated HV bias line

EXO-200 detector: Characterization of APDs: Materials screening: JINST 7 (2012) P05010 NIM A608 68-75 (2009) NIM A591, 490-509 (2008)

The EXO-200 Detector

Massive effort on material radioactive qualification using:

- · NAA
- Low background y-spectroscopy
- $\cdot a$ -counting
- Radon counting
- High performance GD-MS and ICP-MS

At present the database of characterized materials includes >300 entries D. S. Leonard et al., Nucl. Ins. Meth. A 591, 490 (2008)

The impact of every screw within the Pb shielding is evaluated before acceptance

 \rightarrow Goal: 40 cnts/2yr in the 0vßß ±2\sigma ROI in 140kg of LXe

LNGS, Sapienza, LNF, Feb 2014

A substantial system is required to

- protect the 1.5mm
 thin LXe container
 from pressure
- recirculate Xe in gas phase to purify it
- fill/empty the detector
- manage emergencies

Xe purity is essential for good energy resolution

Xenon gas is forced through heated Zr getter by a custom ultraclean pump. At _{Te} = 3 ms:

- drift time <110 µs
- loss of charge:3.6%

at full drift length

Ultraclean pump: *Rev Sci Instr.* 82 (10) 105114 Xenon purity with mass spec: *NIM A675 (2012) 40* Gas purity monitors: *NIM A659 (2011) 215*

LNGS, Sapienza, LNF, Feb 2014

Tracking: an essential tool to identify and suppress backgrounds

LNGS, Sapienza, LNF, Feb 2014

Combining Ionization and Scintillation

EXO-200 and nEXO resolutions

Low Background 2D SS Spectrum

Events removed by diagonal cut:

- α (larger ionization density \rightarrow more recombination \rightarrow more scintillation light)
- events near detector edge \rightarrow not all charge is collected

Rn Content in Xenon

APD signals vs time

Long-term study shows a constant source of ²²²Rn dissolving in ^{enr}LXe: 360 ± 65 µBq (Fid. vol.)

LNGS, Sapienza, LNF, Feb 2014

Energy and position spectra are reproduced by the Monte Carlo with high fidelity

Low background single-site energy (and standoff) spectrum for 28.69 kg·yr (82.1 kg Xe, 127.6 d)

Signal-to-Background ratio 10 20

Multi-site spectrum directly measures the (small) background

Note that an unknown y line at the ßß endpoint would produce a larger peak in the multi-site spectrum, providing a rejection

...since the start of EXO-200 data taking in Jun 2011...

...since the start of EXO-200 data taking in Jun 2011...

EXO-200 (2011) KamLAND-Zen (2012) KamLAND-Zen (2012) Confirmation by KamLAND-Zen								
	EXO-200 (this work)	\neg $\mathbf{T}_{1/2}^{2\nu}$	$^{\scriptscriptstyle \beta\beta} = (2.165 \pm$	= 0.016 ^{sta}	$t^{tt} \pm 0.059^{sy}$	(2012)		
1	1.5 2	2.5 2νββ Τ _{1/2} (×10	[Phys Rev 3 0 ²¹ yr)	• C 89 ((2014) 0	<u>15502]</u>		
Nuclide	${ m T}_{1/2}^{2 uetaetaeta}\pm{ m stat}\pm{ m sys}$	rel. uncert. [%]	$\overline{G^{2\nu}} \\ [10^{-21} \text{ y}^{-1}]$	$M^{2 u}$ $[{ m MeV}^{-1}]$	rel. uncert. [%]	Experiment (year)		
¹³⁶ Xe	$2.165 \pm 0.016 \pm 0.059 \cdot 10^{21}$	± 2.83	1433	0.0218	± 1.4	EXO-200 (this work)		
76 Ge	$1.84^{+0.09+0.11}_{-0.08-0.06}\cdot10^{21}$	+7.7 -5.4	48.17	0.129	+3.9 -2.8	GERDA [39] (2013)		
$^{130}\mathrm{Te}$	$7.0\pm 0.9\pm 1.1\cdot 10^{20}$	± 20.3	1529	0.0371	± 10.2	NEMO-3 [40] (2011)		
$^{116}\mathrm{Cd}$	$2.8\pm 0.1\pm 0.3\cdot 10^{19}$	± 11.3	2764	0.138	± 5.7	NEMO-3 [41] (2010)		
48 Ca	$4.4^{+0.5}_{-0.4}\pm0.4\cdot10^{19}$	+14.6 -12.9	15550	0.0464	+7.3 -6.4	NEMO-3 [41] (2010)		
$^{96}\mathrm{Zr}$	$2.35 \pm 0.14 \pm 0.16 \cdot 10^{19}$	± 9.1	6816	0.0959	± 4.5	NEMO-3 [42](2010)		
$^{150}\mathrm{Nd}$	$9.11^{+0.25}_{-0.22}\pm0.63\cdot10^{18}$	+7.4 -7.3	36430	0.0666	+3.7 -3.7	NEMO-3 [43](2009)		
$^{100}\mathrm{Mo}$	$7.11 \pm 0.02 \pm 0.54 \cdot 10^{18}$	± 7.6	3308	0.250	± 3.8	NEMO-3 [44](2005)		
82 Se	$9.6\pm 0.3\pm 1.0\cdot 10^{19}$	± 10.9	1596	0.0980	± 5.4	NEMO-3 [44](2005)		

LNGS, Sapienza, LNF, Feb 2014

Low background spectrum zoomed around the Ovßß region of interest (ROI)

 ββ2ν

 ββ0ν (90% CL Limit)

 ⁴⁰K LXe Vessel

 ⁵⁴Mn LXe Vessel

 ⁶⁰Co LXe Vessel

 ⁶⁵Zn LXe Vessel

 ²³²Th LXe Vessel

 ²³⁸U LXe Vessel

 ¹³⁵Xe Active LXe

 ²²²Rn Active LXe

 ²²²Rn Inactive LXe

 ²¹⁴Bi Cathode Surface

 ²²²Rn Air Gap

 Data

 Total

No Ov signal observed in the ROI

Use likelihood fit to establish limit

Background counts in $\pm 1,2 \sigma$ ROI

	Expected events from fit				
	±	1σ	±2	2 σ	
²²² Rn in cryostat air-gap	1.9	±0.2	2.9	±0.3	
²³⁸ U in LXe Vessel	0.9	±0.2	1.3	±0.3	
²³² Th in LXe Vessel	0.9	±0.1	2.9	±0.3	
²¹⁴ Bi on Cathode	0.2	±0.01	0.3	±0.02	
All Others	~0.2		~0.2		
Total	4.1	±0.3	7.5	±0.5	
Observed		1	Ļ	5	-
Background index b (kg ⁻¹ yr ⁻¹ keV ⁻¹)	1.5.10) ⁻³ ± 0.1	1.4·10 ⁻³	± 0.1	50 cnts/2yr in the Ονββ _ ±2σ ROI in 140kg of LXe
LNGS, Sapienza, LNF, Feb 2014	EXO-2	200 & nEXO			-

** A.Gando et al. PRL 110 (2013) 062502

Data accumulation (6 Oct 2011 - 6 Aug 2013)

LNGS, Sapienza, LNF, Feb 2014

As EXO-200 continues data taking a new collaboration nEXO is being formed

- New groups have the opportunity to join as "charter members"
- Only conflict with ton-scale projects
- Larger collaboration organized to execute a larger and more formal project

nEXO

5 tonnes of enrXe: entirely cover inverted hierarchy
 LXe TPC "as similar to EXO-200 as possible"
 Provide access ports for a possible later upgrade to Ba tagging

A unique combination of conservative and aggressive design with important upgrade paths as desirable for a large experiment

LNGS, Sapienza, LNF, Feb 2014

130

cm

Tracking: an essential tool to identify and suppress backgrounds

LNGS, Sapienza, LNF, Feb 2014

Material procurement

¹³⁶Xe enrichment easier and cheaper:

→	90% enriched ¹³⁶ Xe: ~10\$/g
	90% enriched ⁷⁶ Ge: ~90\$/g (+xtal growth)

(EXO-200 uses 80% enriched Xe. It now seems customary to do 90% and it appears that there is no major cost difference)

Exact centrifuge capacity in Russia is classified but our contacts indicate that 5000kg in 5 years is comfortable

- World ^{nat'l}Xe production is ~40 tonnes/yr (~4000kg ¹³⁶Xe), however large price fluctuations are not uncommon
- Coordination with DM experiments, space agencies and commercial customers is desirable

Flexible program based on the initial nEXO investment

Preliminary artist view of nEXO in the SNOlab Cryopit

LNGS, Sapienza, LNF, Feb 2014

nEXO design:

Rule #1: Follow as closely as possible the design of EXO-200 since EXO-200 works so well Rule #2: When in doubt, look at Rule #1

→ Limited R&D required: much of the detector can be/is being designed now.
→ Low risk

What we need to change (Cat):

- 1. We know of a few things that were not quite right in EXO-200
- 2. Some items don't scale properly from 150kg to 5000kg

Item/concept	Reason to change	Cat	Risk
Water shield	More convenient for large size, very standard	2	Very low
Vertical detector axis	Horizontal for EXO-200 due to site constraint	1	None
Composite cryostat	Too large for conveyance at SNOlab, composite easier to build underground	2	Low
One drift space	Lowest background in the middle	1	Medium
Internal electronics	Lower outgassing, lower activity, better S/N	2	Low
SiPMs	Better S/N, Lower mass, More common, no HV	1, 2	Medium
No Teflon reflectors	Lower outgassing	1	None
Higher charge readout density	Better background rejection	1	Low
High Voltage Noise	EXO-200 (and other LXe detectors) can't reach full HV	1	Medium
Add LXe purity mtr	Longer drift, harder calibration	2	Low
Add prepurif Xe source	No purity loss from feeds, higher live time	1	None

...it is remarkable that EXO-200 can achieve 5ms electron lifetime with a detector stuffed of (very clean and purged) plastics

LNGS, Sapienza, LNF, Feb 2014

Close-up of the field shaping rings, anode readout tiles and SIPMs

Detail of the cryostat concept

Notional time schedule for nEXO

Decorintion	FУ	FУ	FУ	FУ	FУ	FУ	FУ	FУ	FУ	FУ	FУ
Description	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
EXO-200 Low background run											
EXO-200 Ultra-low background run											
EXO-200 Detector R&D											
nEXO R&D]							
Conceptual Design]							
DOE CD-1			<	>							
Preliminary Design											
DOE CD-2					\diamond						
Final Design											
DOE CD-3							\diamond				
Long Lead Procurement											
Procurement, Fabrication and Assembly											
Installation											
Commissioning											
Ready for Operations											
DOE CD-4										<	
Xenon Procurement											
(51 enrichment)											

Cosmogenic n backgrounds in nEXO simulated using FLUKA

...but, before relying on it, FLUKA's prediction can be verified with actual EXO-200 data!

Other n backgrounds

- Prompt events following a muon
- Neutrons from rock radioactivity
- very strongly suppressed by the large water shield and give a negligible contribution

Direct color v interaction	Rate all energies	Rate in ROI				
Direct Solar v Interaction	(ev/tonne/10yr)		(ev/mol/yr/ FWHM)			
N _e – e elastic scattering (⁸ B+reactors+Geo)	17.6	0.16	3.1·10 ⁻⁶			
v capture on ¹³⁶ Xe (⁸ B v)	20	0.16	3.2·10 ⁻⁶			
v-induced ¹³⁶ Cs decay	50	0.03	4·10 ⁻⁷			
Total	88	0.35	6.7·10 ⁻⁶			

From this study can extract backgrounds as function of depth

Conclusion:

- SNOIab and Jinping are comfortable
- SanfordLab at 4850 is probably ok
- Gran Sasso is marginal but may be ok, needs veto study

LNGS, Sapienza, LNF, Feb 2014

Summary of nEXO assumptions compared to EXO-200

Parameter	nEXO	EXO-200
Fiducial Mass (kg)	4780	98.5
Enrichment (%)	90	80
Data taking time (yr)	5	5
Energy resolution $@Q_{\beta\beta}$ (keV)	58	88 (58)
Background in ROI (ev/yr/mol ₁₃₆)	6.1·10 ⁻⁴	0.022 (0.0073)
Background in ROI inner 3000kg (ev/yr/mol ₁₃₆)	1.6.10-4	-

Summary

- EXO-200 taking data since Jun 2011
- Discovered the 2vßß decay in ¹³⁶Xe; most accurate measurement to date
- Very competitive limit on the Ovßß decay with the first 4 month of data
- ~4x dataset on disk, better analysis
- Rn abatement system and upgraded electronics being prepared
- \cdot Working on the design of nEXO
- Next few years will be very exciting!