Precision tests of Newton's inverse-square
law and Einstein's equivalence principle

results are interesting because of the extraordinary
sensitivity of our mechanical experiments to tiny forces
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will discuss experimental principles
and the motivations for, results from, and implications of,
the following experimental tests:

o Equivalence Principle (universality: of free fall)
broad-gauge search for exotic Yukawa forces
gravitational properties of dark matter
gravitational properties of antimatter

o |RVerse-sguare law: at short distances (completely unknown)
broad-scale search for new mevV-scale physics
extra dimensions
chameleons
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unifying gravity with the other forces in physics is the
central problem in fundamental science

string or M theory provides the only known framework
for doing this but it inherently contains features that have to be
hidden from experiment:

10 or 11 dimensions
100s of massless scalars with “gravitational” couplings

and it doesn’t naturally account for the extreme weakness
of gravity or the observed “dark energy”

many scenarios have been invented to address this;
some of these predict new features could show up in
equivalence principle and/or inverse-square law tests



Einstein used the equivalence principle to
develop his relativistic theory of gravity.

Statements of Einstein’s equivalence principle:

e acceleration is locally equivalent to gravity
* J|ocal effects of gravity disappear In

freely falling frames
* In Newtonian terms mg = mi

The most precisely tested manifestion of the EP
IS the universality of free fall (WEP)



testing the WEP by watching things fall sideways

balance only twists If force vectors are not parallel
down Is not a unique direction If the EP Is violated
or If the gravity field is not uniform



brief history of EP tests in the 20™ century:

1910-20’s EOtvOs
watched things falling In
earth’s field and turned balance manually

1950-60’s Dicke
watched things falling toward sun and let
earth’s rotation turn his instrument

1980’s onward EOt-Wash

watched things fall in fields of earth, sun, galaxy
and in the rest frame defined by the CMB

using balances on high-performance turntables



two ways to think about WEP tests:

old way:
IS mg = mi exactly true?

new way (popularized by E. Fischbach):
a broad-gauge way to search for exotic
ultra-feeble long-range boson-exchange
forces that may lie hidden underneath
gravity



parameterizing EP-violating effects of
guantum vector exchange forces

gravity couples to mass

guantum exchange forces
couple to “charges”



torsion pendulum of our recent EP test
T. A. Wagner et al., Class. Quant. Grav. 29, 184002 (2012)

20 um diameter tungsten fiber

eight 4.84 g test bodies
(4 Be &4 Ti) or (4 Be &4 Al)

4 mirrors for measuring
pendulum twist

symmetrical design
suppresses false effects
from gravity gradients, etc.

free osc freq: 1.261 mHz
guality factor: 4000

machining tolerance: 5 um
total mass : 70 g




Eot-Wash torsion balance hangs from turntable
that rotates at about 0.833 mHz

; |

turntable requirements:

1) constant rotation rate

2) rotation axis must be along
the suspension fiber

air-bearing turntable

thermal expansion feet
fedback to keep turntable
rotation axis level




without “feetback”
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gravity-gradiometer pendulums

g., configuration on a table 0,: configuration installed



Q,; compensators
Total mass: 880 kg
Q,,= 1.8 g/lcm3

gravity-gradient compensation

Compensators
can be rotated
— by 360°
r""ﬂ
r .

Q;; compensators
Total mass: 2.4 kg
Q5 =6.7x10“g/lcm?

hillside &
local masses



imitations on gradient cancellation

these data were taken in early November



torsion pendulum of our recent EP test
T. A. Wagner et al., Class. Quant. Grav. 29, 184002 (2012)

8 tiny screws that grad
students painstakingly
adjust to null out leading
mass multipole term (g21)
and reduce sensitivity to
changing gravity gradients

free osc freq: 1.261 mHz
guality factor: 4000
machining tolerance: 5 um
total mass : 70 g



correction for tilt of the

Leveling - ]
feet turntable rotation axis
N
| N Feedback . :
i nulls signal - Egr(]esdobrack removes tilt at upper tilt
. of upper tilt
" sensor - Eo_\Nﬁver, local vertical varies with
------------- - eight

- gives a spurious deflection of
the pendulum due to residual
tilt

gradient
compensator

1.70m

Directions of down?ere and here differ by 50 nrad

/” If rotation axis is down at the upper sensor, the
-------------- = R suspension fiber experiences 50 nrad of “tilt”.
________________ The measured correction for this is 16 x 10-13

Lower tilt cm/s2
sensor




EP signal — / Wy
0.5 1

daily reversal of
pendulum orientation
with respect to
turntable rotor
canceled turntable
Imperfections.

[mrad? / Hzl

Power Spectral Density

10° ?
Frequency [Hzl

data points show

the difference of 2
opposite pendulum
orientations in 2 week
long runs; the
difference In the solid S

lines is due only to Data Set

the test bodies Figure 5. Data collected in the Ti-Be (first 4 runs) and Be-Ti (last 2 runs)

configurations of the pendulum. The final result is in the difference between the means

the mse IveS of the two configurations (shown as solid lines).

Ti-Be




results with 10 uncertainties

Be-Ti Be-Al

0.63.1 —1.2+2.2
—2.5+3.5 0.2+24
—1.8+ 28 —3.1x24
—2.1+3.1 —1.2+26

0.3x1.8 —0.7x1.3
—3.14+4.7 —5.2=x4.0
—4.24+6.2 —2.4+5.2

Table 2. Error budget for the lab-fixed Be-Ti differential accelerations. Corrections
were applied for gravitational gradients and tilt, only upper limits were obtained on
the magnetic and temperature effects. All uncertainties are 1o,

Uncertainty source Aanpe-1i (107" ms™?)  Aawpe_mi (107 ms?)

Statistical 3.3+25 —24+24
Gravity gradients 1.6 +0.2 0.3+£1.7
Tilt 1.2+£0.6 —0.2£0.7
Magnetic 0+0.3 0+0.3
Temperature gradients 0+1.7 0+1.7

PhD project of Todd Wagner



an amusing number

our differential acceleration resolution
Na~3x1013 cm/s?

IS comparable to the difference in g

between 2 spots In this room separated
vertically by ® 1 nm



95% confidence level exclusion plot
for interactions coupled to B-L
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Yukawa attractor integral based on:
0.5m<A<5m lab building and its major contents
1m< A<50km topography.

Skm< A<1000km USGS subsurface density model
1000km< A<10000km PREM earth model

T. A. Wagner et al., Class. Quant. Grav. 29, 184002 (2012)




OUR, EXPERIMENTAL STRATERY  C.W.STUBAS
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95% confidence limits on non-gravitational
acceleration of hydrogen by galactic dark matter
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at most 6% of the acceleration can be non-gravitational



gravitational properties of antimatter

Some people suggest that antimatter could

could fall up with acceleration -g! They propose

o test this by drepping antinydregen, a very: difficult
and challenging experiment. How: plausible is this
SCEenario?

lifantimatter falls ujp:
1) phoetens (their own antiparticles) should not fall

2) nucleons (=99% of thelr mass consists of glue &
antiglue) should fall with ~100 times
smaller accelerations than electrons




gravitational properties of antimatter
(guantitative argument)

It H and anti-H fall with different accelerations
gravity. must have a vector component. Consider
an EP test with H and anti-H. This would have
A(Z)=2. Our Be/Al EP test has A(Z/1)=0.0382
and we See no evidence for such an iteraction
with Ag/g greater than a few parts in 101s.

The following plet assumes only CPT invariance
and the impossibility of exact cancellation
between V and S interactions



95% CL constraints on gravi-vector difference in
free-fall accelerations of anti-H and H
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T. A. Wagner et al., Class. Quant. Grav. 29, 184002 (2012)



motivations for sub-millimeter tests of
the inverse-square law

= explore an untested regime

= probe the dark-energy length scale
pa ~ 3.8 keV /cm?

Ad = Vhe/pag = 85 um

= search for proposed new phenomena
large extra dimensions: why is gravity so weak?
chameleons: what happened to the stringy scalars?



Parameterizing ISL violating effects

V ( r } — Ig ( ” [1 + aexp( —;r, ,\}]

this Yukawa form 1s exact for one-boson exchange and a good approximation
for extra dimensions as long as r < R where R 1s the size of the largest extra
dimension.

Note that a # a. For a given Yukawa interaction, the I[SL-violating signal
cr, which reflects the full strength of a new iteraction, 1s much larger than
the EP-violating signal. o, which describes only 1ts composition-dependent

plece.
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Gauss’s Law and extra dimensions

Moral: to see the true strength of gravity
you have to get really close

illustration from Savas Dimopoulos



chameleons

Chameleons circumvent experimental evidence against
gravitationally-coupled low-mass scalars by adding a
self-interaction term to their effective potential density.

This gives massless chameleons an effective mass in
presence of matter so that a test body’s external field comes
entirely from a thin skin of material of thickness ~ 1/m .
For a density of 10 g/cm3 and natural values of the
chameleon couplings this skin is ~ 60 um thick; making
such particles very hard to detect.

Khoury and Weltman, PRD 69, 0444026 (2004)
Gubser and Khoury, PRD 70, 104001 (2004)



the 42-hole ISL pendulum

tungsten fiber, 20pum diameter, 80cm length

leveling mechanism

3 aluminum calibration spheres

4 mirrors for tracking angle of deflection

detector: 1mm thick molybdenum ring

with 42 holes arranged 1n 21-fold
rotational symmetry

not pictured, 10pm thick Au-coated
BeCu membrane, electrostatic shield

attractor : rotating pair of discs with 21-
fold rotational symmetry, holes in lower
attractor out of phase with holes m upper
attractor to cancel Newtonian gravity

D.J. Kapner et al., PRL 98, 021101(2007)
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data from 42-hole experiment Il
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95% confidence upper limits on ISL
violation as of 2008
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Some implications If the 42-hole results:

largest extra dimension < 44um
dilaton mass > 3.5 meV
strong constraints on generic chameleons

excluded by Eot-Wash

1 10 100

matter coupling &

Upadhye, Hu and Khoury, PRL 109, 0413012012)




our next-generation short-range instrument

Ny = C)&J;i:;’ 2 G prA§ exp(— :\)
Kapner et al. Cook et al.
symmetry: 21 120 & 18
material: molybdenum (10.3 tungsten (19.3 g/cm?)
g/cm?)
thickness: 1 mm 0.05 mm
attractor: 2 pieces 1 piece

70mm

///////////m\\\\\\\\\\
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cleanliness iIs

Pendulum
e (Clear dust with 0.003” broom

e Pendulum kicked when touches
debris

Attractor
e Clear dust with lint-free cloth
e Large dust visible through foil

e Touching can short-circuit
attractor-screen capacitance

e Touching or dust can modulate
pendulum-screen capacitance

Ted Cook | tedcook@gmail.com | www.npl.washington.edu/eotwash
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patch fields

patch field potential minimum
not aligned with fiber minimum

T
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Mapping the pendulum & attractor geometries

Need precise model of the mass distribution
of the tungsten and the glue
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Data Fit
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Cook’s preliminary 95% C.L. results
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Is Lorentz symmetry broken at the Planck
scale?

The Universe defines a frame in which the CMB' IS
essentially 1sotropic. Could there be other, more

fundamental, preferred frame effects defined by the
Universe?

Kostelecky et al. developed a scenario where vector and
axial-vector fields were spontaneously generated in the
early universe and then inflated te enermous extents;

particles couple to these preferred-frame fields in
Lorentz-invariant manners.

This “Standard Model Extension” predicts many new
observables some of which violate CPT. One observable
IS £ = 0e- b= Where bDe is fixed in inertial space - its
benchmark value IS me2/ Mpjanck & 2 > 10-17 eV



do space-time coordinates commute?

string theorists have suggested that the space-time
coordinates may not commute, I.e. that

where Ojj has units of area and represents the
mimimum observable patch of area, just as the
commutator of x and px represents the minimum
observable product of Ax Apx

“Review of the Phenomenology of Noncommutative
Geometry”
|. Hinchliffe, N Kersting and Y.L. Ma
hep-ph/0205040



effect of non-commutative geometry on

a spin
B
non-commutative geometry is
equivalent to a “pseudo-magnetic”
field and thus couples to spins A

Anisimov, Dine, Banks and Graesser
Phys Rev D 65, 085032 (2002)
[l is a cutoff assumed to be 1TeV



the Eot-Wash spin pendulum

9.8 x 1022 polarized electrons
negligible mass asymmetry
negligible composition asymmetry
flux of B confined within magnets
negligible external B field

SmCo:: Sm 3* ion has spin
pointing along total B and its spin
B field is nearly canceled by its
orbital B field--so B of SmCo
comes almost entirely from tghe
Co’s electron spins

therefore the spins of Alnico and
Co cancel and pendulum’s net spin
comes from the SmandJ =10 S




measuring the spin pendulum’s stray B field

L—_

B inside = 9.6+0.2 kG B outside = few mG




an amusing number

= OUr upper limit on the energy
required to Invert an electron spin
about an arbitrary axis fixed in inertial
space IS —10-2= eV

= this IS comparable to the electrostatic

energy of two electrons separated by.
~ 90 astronomical units



Lorentz-symmetry violating rotation

parameters

TABLE IX: 1o constraints on the Lorentz-symmetry violating
b¢ parameters. Units are 10722 eV,

parameter electron proton neutron
~ our work
bx —0.67 £ 1.31 < 2 X 10* 0.22 £0.79
By —0.18 = 1.32 < 2 X 10% 0.80 = 0.95
bz —4 444 Pl /
f /I /'
‘ Cane et al, PRL 93(2004) 230801 Phillips et al, PRD 63(2001) 11110

These should be compared to the benchmark value
2 /1, _ —17 v




constraint on non-commutative geometry

If electrons are point-like up to A =1 TeV , this
corresponds to a minimum observable area

IQH.L"l < 6 x 10—58 m2

6 [ 10-58 m2 ~ (106 L,)2
where L, is the Planck Length = V(h G/c3) = 1.6 x 1035 m

or ~ (103 L)?
where L is the GUT scale = hc /10 GeV

but 101° GeV is not too shabby for a table-top instrument
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the chameleon mechanism

circumvents experimental evidence against the
gravitationally coupled low-mass scalars

by adding a self-interaction term

to their effective potential density

I 5 5 y §
| = (0.T) = ‘5”1 P + j“ — -

e

In presence of matter this gives massless
chameleons an effective mass

so that a test body’s external field comes only from
a thin skin of material of thickness ~ 1/m.



Any given test of the %™ law s
sensitive to a restricted rame of lengih (oales

precession of perigee

L hetdd many different approaches fo cover
A wide ravge of lenglh Sonlts




Suppose we have no preconceptions about the
nature of EP violation and want unbiased tests:

this reguires:

sSensitivity te wide range ofilength scales
earth (not sun) as attractor
Site with interesting tepography.

eSensitivity te wide range ofi pessible charges
Vector charge/mass ratio IS of any substance
vanishes for some value of w.
need 2 test body pairs and 2 attractors
to avoid possible accidental cancellations



Although we found no evidence for a 5™ force,

we were very lucky because Fischbach’s idea of
using EP data to probe new physics turned out 1
be very powerful and has kept us busy for years

Fischbach et al.
1986 analysis

our 1994 result

-15-10 -5 0 5 10 15 20 25 30
10* A(B/)
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