Motivation 000	Common Causes	Direct Causes 000	Combination 0000000	Conclusion 00

A Hidden Influence inequality for 3 parties Why quantum correlations are even stranger than we thought

Tomer Barnea

29 April 2014

FACULTÉ DES SCIENCES Département de physique appliquée

Motivation	Common Causes	Direct Causes	Combination	Conclusion
● 00				

Overview Is quantum theory exact?

Goal Explain experimentally observable quantum correlations How Locally and continuously in space and time

- Preliminaries
- Discuss different explanations
- No-go theorems
- ! Quantum correlations are even more intriguing than expected

Motivation	Common Causes	Direct Causes	Combination	Conclusion
000				

Quantum correlations

Tomer Barnea

COST Workshop @ INFN Frascati (3/20)

Motivation	Common Causes	Direct Causes	Combination	Conclusion
000				

Properties of Quantum correlations

Non-signalling principle

A's output does NOT depend on B's input A gains no information about B's input

Formal definition

A probability distribution p(ab|xy) is non-signalling iff

$$\sum_{b} p(ab|xy) = p(a|xy) = p(a|x) \qquad \forall a, x, y$$
$$\sum_{a} p(ab|xy) = p(b|xy) = p(b|y) \qquad \forall b, x, y$$

Motivation	Common Causes	Direct Causes	Combination
	0000		

The different explanations in more details

Local and continuous explanations in space and time

Motivation	Common Causes	Direct Causes	Combination
	● 000		

The different explanations in more details

Local and continuous explanations in space and time

Common causes

Local variables Common past

Motivation	

Common Causes

Direct Causes

Combination

Conclusion

The different explanations in more details

Local and continuous explanations in space and time

Common causes

Local variables Common past Direct causes

Hidden influences Speedv > c

Comme
0000

on Causes

Direct Causes 000 Combination

Conclusion 00

The different explanations in more details

Local and continuous explanations in space and time

Common causes

Local variables Common past

Direct causes

Hidden influences Speedv > c

Motivation	Common Causes	Direct Causes	Combination	Conclusion
	0000			

Approach I: Common causes

Local and continuous explanations in space and time

Common causes

Local variables Common past

Motivation	Common Causes	Direct Causes	Combination	Conclusion
	0000			

Approach I: Locally causal theories

• We agree on *Strategies* before the measurements

A's past c-cone B's past c-cone

- Locality assumption: $p(ab|xy) = \sum q(\lambda)p(a|x\lambda)p(b|y\lambda)$
- λ in the shaded region

Motivation	Common Causes	Direct Causes	Combination	Conclusion
	0000			

• Measuring quantum state $\rho_{AB} \Rightarrow p(ab|xy)$

$$|\Psi^{-}
angle =
ho_{AB} = rac{1}{\sqrt{2}} (|0
angle_{A} \otimes |1
angle_{B} - |1
angle_{A} \otimes |0
angle_{B}) \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}$$

Theorem (Bell)

No locally causal theory can account for all quantum correlations

J. S. Bell, Physics 1 (3) p. 195-200 (1964)

Motivation	Common Causes	Direct Causes	Combination	Conclusion
		000		

Approach II: Direct causes

Local and continuous explanations in space and time

Direct causes

Hidden influences Speedv > c

Motivation	Common Causes	Direct Causes	Combination	Conclusion
000	0000	000	000000	00

Approach II: Hidden influences (HI)

• Hidden in the sense not having observable consequences e.g Non-signalling

Motivation	Common Causes	Direct Causes	Combination	Conclusion
		000		

Contradiction by changing the timing of A and B

Valerio Scarani, Nicolas Gisin, Physics Letters A 295 (4) p.167-174, (2002)

Tomer Barnea

COST Workshop @ INFN Frascati (11/20)

Motivation	Common Causes	Direct Causes	Combination	Conclusion
			•000000	

Approach III: Combining the two

Local and continuous explanations in space and time

0000 0000	

Approach III: v-causal models

• Causal influences propagate at speed v > c

 $K_1 \& K_2$ are *v*-causally connected

K₁ & K₃ are *v*-causally disconnected

Motivation	Common Causes	Direct Causes	Combination	Conclusion
			000000	

Approach III: v-causal models

Definition

A v-causal model is one that satisfies the equations below

$$P_{A < B}(ab|xy) = \sum_{\lambda} q(\lambda)P(a|x,\lambda)P(b|y,ax\lambda)$$

if A and B are *v*-causally connected

$$P_{A\sim B}(ab|xy) = \sum_{\lambda} q(\lambda)P(a|x,\lambda)P(b|y,\lambda)$$

if A and B are *v*-causally disconnected

Approach III: v-causal models for quantum mechanics

all those that explain quantum correlations wherever possible

Note The quantum probability P^Q is independent of the spacetime ordering of the measurements

Approach III: v-causal models for quantum mechanics

all those that explain quantum correlations wherever possible

- Note The quantum probability P^Q is independent of the spacetime ordering of the measurements
 - ⇒ Minimal consistency assumption
 - Any *v*-causal model to reproduce quantum mechanics, satisfies:

$$P^{\mathsf{v}}_{\mathsf{A}<\mathsf{B}}=P^{\mathsf{v}}_{\mathsf{B}<\mathsf{A}}=P^{\mathsf{Q}}$$

Approach III: v-causal models for quantum mechanics

all those that explain quantum correlations wherever possible

- Note The quantum probability P^Q is independent of the spacetime ordering of the measurements
 - ⇒ Minimal consistency assumption
 - Any *v*-causal model to reproduce quantum mechanics, satisfies:

$$P_{A$$

- ! In certain spacetime configurations not all quantum correlations are reproducable
 - e.g if $A \sim B$ and the quantum correlations were nonlocal to begin with

Motivation	Common Causes	Direct Causes	Combination	Conclusion
000		000	0000000	00

Approach III: How to find a quantum example

Local between parties A and CNon-signalling

 \Rightarrow Bell-Inequality

Only use $P_A, P_B, P_C, P_{AB}, P_{BC}$ Hidden influence constraints!

Tomer Barnea

Motivation	Common Causes	Direct Causes	Combination	Conclusion
			0000000	

Motivation	Common Causes	Direct Causes	Combination	Conclusion
			000000	

• $\Psi_{ABCD} \in \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$

J-D. Bancal et al., Nature Physics 8, 867 (2012)

• $\Psi_{ABC} \in \mathbb{C}^2 \otimes \mathbb{C}^3 \otimes \mathbb{C}^2$

T.J. Barnea et al., Phys. Rev. A 88, 022123 (2013)

Motivation	Common Causes	Direct Causes	Combination	Conclusion
			000000	

•
$$\Psi_{ABCD} \in \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$$

J-D. Bancal et al., Nature Physics 8, 867 (2012)
Problems:
• 4 partite state, visibility needed: 96%

$$\Psi_{ABC} \in \mathbb{C}^2 \otimes \mathbb{C}^3 \otimes \mathbb{C}^2$$
T.J. Barnea et al., Phys. Rev. A 88, 022123 (2013)
Problems:

• 3 partite state, visibility needed: 99.9%

Motivation	Common Causes	Direct Causes	Combination	Conclusion
			000000	

•
$$\Psi_{ABCD} \in \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$$

J-D. Bancal et al., Nature Physics 8, 867 (2012)
Problems:

• 4 partite state, visibility needed: 96%

•
$$\Psi_{ABC} \in \mathbb{C}^2 \otimes \mathbb{C}^3 \otimes \mathbb{C}^2$$

T.J. Barnea et al., Phys. Rev. A 88, 022123 (2013)
Problems:

- 3 partite state, visibility needed: 99.9%
- Experimental test still very challenging

Motivation 000	Common Causes	Direct Causes	Combination 0000000	Conclusion ●0

The different explanations in more details

Local and continuous explanations in space and time

Motivation 000	Common Causes 0000	Direct Causes 000	Combination 0000000	Conclusion ●0		
The differe	The different explanations in more details					
	IHΣ					
	al and continuous a	volonations in so	and time			
Loc	ai and continuous e	explanations in spa	ace and time			
Common	causes	Both	Direct cause	es		
×			×			
\rightarrow Discontinuous explanations in space-time needed						
, ,						

Motivation	Common Causes	Direct Causes	Combination	Conclusion
				00

Acknowledgements:

Jean-Daniel Bancal (Singapore), Yeong-Cherng Liang (Zurich), Nicolas Gisin (Geneva)

Acknowledgements:

Jean-Daniel Bancal (Singapore), Yeong-Cherng Liang (Zurich), Nicolas Gisin (Geneva)

Thank you for your attention

Picture from:

- http://twistedsifter.com/category/history/page/19/
- http://www.houseofsound.ch/monacor-megaphon-tm-22.html
- http://www.hindenburger.de/leser-122/items/wie-bitte.html

Questions?

Tomer Barnea