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SUMMARY

IF IT IS NOT HERE, IS IT ZERO?
\[0)4
IF IT IS NOT HERE, THERE IS THE VACUUM
but......

This leaves no way for strict localization



Quantum springboards
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Particles < elementary excitations of global oscillators
Vacuum < ground state

All oscillators are present in the vacuum
Local excitations are not particles, Global are  (standard Fock Space)

Vacuum entanglement: what you spotat @; dependson ¢;



Hegerfeldt Theorem
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Y =e "My H >c {EitherPA(t)#O‘v’teR

Pa(t) = (ve|Ajs) A>0 or PA(t)=0Vte R
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Take | A= [, |z)(z| as (z|le7*"*|¢) analyticin 0=Im ¢

Either v is in V forever (Py(t) # 0Vt € R)

or v isnever in V (Py(t) =0Vt € R)



Instantaneous spreading —> causality problems in RQM and QFT
Prigogine: KG particle  [¢)) = f dwyrp(wr, x)al (k)|0)
0
initially localizedin V., ¢(wg,z)=0ifz ¢V

box splits and expand at the speed of light
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Chp(t,z) =0
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- z P(t, z) = Rep(t, z) + T (t, 7)

_ destructive interferenceat t = 0
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Sy (t-,. x) strictly non local

a

NS\

Antilocality of @y, : 9)(t,x) =0, and wp(t,x) = 0Vr € I = p(t,z) =0

A simplified version of Ree-Schlieder th.
Even if ¢(t = 0,z) = 0, Vz € V, necessarily @[)(t =0,z) #0forz ¢V



Wave function and its time derivative
vanishing outside a finite region

requires of positive and negative frequencies



What happens when a photon,
produced by an atom inside a cavity,
escapes through a pinhole?

Eventually the photon will impact on a screen at { = d / C

Butatt=0 ¢ # 0 only at the pinhole,
and the photon energy is positive (back to Prigogine)

According to Hegerfeld + antilocality
the photon will spread everywhere almost
instantaneously

As this is not the case,

we have to abandon Fock space for describing the photon through the pinhole



4# Cauchy surface t=0

r

Local quanta givenby ¢ =0 = b out of r

Modes  u(z,t) initiallylocalizedinr  w;(z,0) =0 z &r

Operators aj, a,L ar,al ] = 0im

Two types of quanta
global (), > (0 eigenstates cannot vanish outside finite intervals

local both frequencies localized within finite intervals



Photon emerging through the pinhole as a well posed Cauchy problem

with initial values for ¢ and ¢ vanishing outside the hole.

1+1 Dirichlet problem where the global space is a cavity {z € [0, R]}
and the initial data vanish outside an interval of the cavity L=1[0,r], r<R
Cauchy data can be written as ¢(x) = >, cruk(x), b=3 L Crtg ()
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We follow a similar procedure for the case finite Cauchy data out of the interval:

relL=[rR], T=R-—r

u(z) = \/?}Tsmmj up(z) = —zwkr sin TEZ | =1, 2...

Global modes for all times:

Un(t,z) =Uxy ($)E_*ﬂﬁ't — \,ﬁ sin W?{J ¢ — i ttionary modes)

How sums of ‘ng($) and Ug (I) build up UN (21?) at t=0

UPPER CASE lower case lower case



Local modes are superpositions of positive and negative frequencies

ug(z,t) = Z ((wi + O )e ™™ — (wi — Q) e*™ ) Un () View
N

g (z,t) = ((@r + Dn)e ™™ — (@ — Qn)e* ™) Uy () Ve




Field expansions

e

bz, t) =% (UN (x, ) Ay + U (g;,t)gi;) zE€R
o(z,t) =3, (ﬂz (z,t)a; + uj (z,t)&l) , €L

d(x,t) =Y, (ﬁg(:ﬂ, tay + u (g:,t)aj) L ze€R-L

Bogoliubov transformations

am =Y (um|Un)An + (um|UR)AY  al, = (Unlum) AL + (Uy lum)An
N N

Gm =Y _(am|Un)AN + (@m|UR)AY @l = (Unlam) AN + (Uy [@m) A
N N

Canonical conmutation relations
[{I.m, ﬂ':rz] — 51?1“ [a‘m& EL] =0 [ﬁma EL] = Em'n.



Local quantization

tm = Y (um|UN)AN + (um|UR) A}
N

m = Y _(Tm|UNn)AN + (Um|UR) AL
N

[@m,8n] =0, [@m,al] =0

L.ocal vacuum

ot ynm al )tm
ni,nog, ): (\/T:l)ml |U>L, |ﬁlaﬁ2: )_H(\;;_L)m |U)L



Unitary Inequivalence

> (0611m + im|0G) = D (OL|NN[0L) = D (U [um)I* + |(Ux |im) [
N m, N

m

(O|Nw[0z) =D (U lum)I* + (U |@m)|* = o0

globa,anumber operators Ny are ill defined in the local Fock space

(0G| 7un + im|0G) = 3 _ (U |tm)|” + (U3 | )|* < 00
N



Positivity of energy

HY =H — (0c|H|0g) H" =H —(0L|H|0L) &= (0.|HC|0L)

(mu, 0| H|my, 0) = mu ) O (|(w|Un)I? + [(u [UN)I?) + €
N

(g, OLH*|my,0) = mq ) Qv (|(w|Un)I* + |(uf |Un)I?)
N

Energy of the local quanta: € = Z On (|(H£|UN)|2 + |(U?|UN)|2)
N



Exciting the vacuum with local quanta  [Og) — {I;rn 0g)

_ m
Normalized one-local quantum state |"rb) — (

If |w>were strictly local

<w‘ﬁm‘w> — <0G‘ﬁ’m‘0{?> should be zero

N.B. in the local vacuum a,l |0L> — 0

then the states ‘¢L> — &T|OL>

Become strictly local <®L‘ﬁm‘¢L> I <0L‘ﬁﬂLIOL> =0
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This is not the case in global vacuum

(Y]m|Y) — (0c|nm|0c)

due to vacuum correlations

cort (N, i)




Strict localisation on the local vacuum

1) is said to be strictly localised within a region of space fR if the
expectation value ot any local operator O(z) outside that region (i.e. x ¢ R) is identical to that
of the vacuum, i.e.

(¥|0(z)|4) = (0]O(2)|0) ifz ¢ R.

i miyma,...) = [T 27 o
1,71824 .-/ — - \/’nm' L

(¥0(@m, a;,) ) =

= (0L|O(am, a,)|0L)



In QM there are conjugate operators Q, P and conjugate representations

They are unitarily equivalent (Stone Von-Neumann, Pauli).

In coQM there are conjugate operators ¢(t,x), 7(t,x) and conjugate representations

They may be unitarily inequivalent (infinite degrees of freedom) (Unruh, de Witt, Fulling)
Wigner representations ......ccocvvvvevieniisinieien s sssseseeees e global elementary exitations
Localized representations .......c.cccccvvivveninicnnien e e e local elementary excitations

Quantum vacuum is global == vacuum entanglement
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