A time-symmetric relativistic model violating Bell's inequality

Dustin Lazarovici
Ludwig-Maximilians-University
Department of Mathematics
lazarovici@math.Imu.de

What is the greatest challenge posed by QM ?
non-locality

Z

A neglected route:

time-symmetric relativistic interactions
advanced + retarded

A toy model

A toy model

A toy model

1) Particles with an internal degree of freedom („Spin")

$$
\mathbf{S} \in S^{2}
$$

A toy model

1) Particles with an internal degree of freedom („Spin")

$$
\mathbf{S} \in S^{2}
$$

2) Ensemble of pairs of particles

$$
\mathbf{S}^{A}(t=0)=-\mathbf{S}^{B}(t=0)=\mathbf{S}_{0}, \quad \mathbf{S}_{0} \in S^{2} \text { random }
$$

A toy model

1) Particles with an internal degree of freedom („Spin")

$$
\mathbf{S} \in S^{2}
$$

2) Ensemble of pairs of particles

$$
\mathbf{S}^{A}(t=0)=-\mathbf{S}^{B}(t=0)=\mathbf{S}_{0}, \quad \mathbf{S}_{0} \in S^{2} \text { random }
$$

3),"Spin" measurement in direction a measures

$$
\operatorname{sgn}\langle\mathbf{a}, \mathbf{S}\rangle \in\{ \pm 1\}
$$

A toy model

1) Particles with an internal degree of freedom („Spin")

$$
\mathbf{S} \in S^{2}
$$

2) Ensemble of pairs of particles

$$
\mathbf{S}^{A}(t=0)=-\mathbf{S}^{B}(t=0)=\mathbf{S}_{0}, \quad \mathbf{S}_{0} \in S^{2} \text { random }
$$

3),"Spin" measurement in direction a measures

$$
\operatorname{sgn}\langle\mathbf{a}, \mathbf{S}\rangle \in\{ \pm 1\}
$$

4) Measurement projects \mathbf{S} into the measured direction

$$
\mathbf{S} \longrightarrow \operatorname{sgn}\langle\mathbf{a}, \mathbf{S}\rangle \mathbf{a}=\frac{\langle\mathbf{a}, \mathbf{S}\rangle}{|\langle\mathbf{a}, \mathbf{S}\rangle|} \mathbf{a}
$$

Measurement

Measurement

„a-spin up"

a

Measurement

Measurement

„a-spin down"

4) Particle Interaction

The spin state S is subject to a pair interaction whose effect is such that a particle continuously rotates the spin of its partner towards the orientation antipodal to its own. This effect is manifested by an advanced and retarded action of one particle on the other which is unattenuated by spatial distance.

4) Particle Interaction

The spin state S is subject to a pair interaction whose effect is such that a particle continuously rotates the spin of its partner towards the orientation antipodal to its own. This effect is manifested by an advanced and retarded action of one particle on the other which is unattenuated by spatial distance.

advanced + retarded

Without advanced interactions $\quad \Rightarrow \quad$ local theory

Without advanced interactions $\quad \Rightarrow \quad$ local theory
e.g. for $a=0^{\circ}, b=120^{\circ}, c=240^{\circ}$:

$$
\mathbb{P}(A \neq B \mid a, b)+\mathbb{P}(A \neq B \mid b, c)+\mathbb{P}(A \neq B \mid a, c)=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1
$$

Without advanced interactions \Rightarrow local theory
e.g. for $a=0^{\circ}, b=120^{\circ}, c=240^{\circ}$:

$$
\mathbb{P}(A \neq B \mid a, b)+\mathbb{P}(A \neq B \mid b, c)+\mathbb{P}(A \neq B \mid a, c)=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1
$$

Bell's inequality:

$$
P(A \neq B \mid a, b)+P(A \neq B \mid b, c)+P(A \neq B \mid a, c) \geq 1
$$

Final state

$$
\mathbf{S}_{A}=\frac{\alpha \mathbf{S}_{0}-\beta B \mathbf{b}+\gamma A \mathbf{a}}{\left\|\alpha \mathbf{S}_{0}-\beta B \mathbf{b}+\gamma A \mathbf{a}\right\|}
$$

Final state

$$
\begin{aligned}
& \mathbf{S}_{A}=\frac{\alpha \mathbf{S}_{0}-\beta B \mathbf{b}+\gamma A \mathbf{a}}{\left\|\alpha \mathbf{S}_{0}-\beta B \mathbf{b}+\gamma A \mathbf{a}\right\|} \\
& \mathbf{S}_{B}=\frac{-\alpha \mathbf{S}_{0}-\beta A \mathbf{a}+\gamma B \mathbf{b}}{\left\|-\alpha \mathbf{S}_{0}-\beta A \mathbf{a}+\gamma B \mathbf{b}\right\|}
\end{aligned}
$$

Final state

$$
\begin{aligned}
& \mathbf{S}_{A}=\frac{\alpha \mathbf{S}_{0}-\beta B \mathbf{b}+\gamma A \mathbf{a}}{\left\|\alpha \mathbf{S}_{0}-\beta B \mathbf{b}+\gamma A \mathbf{a}\right\|} \\
& \mathbf{S}_{B}=\frac{-\alpha \mathbf{S}_{0}-\beta A \mathbf{a}+\gamma B \mathbf{b}}{\left\|-\alpha \mathbf{S}_{0}-\beta A \mathbf{a}+\gamma B \mathbf{b}\right\|}
\end{aligned}
$$

Measurement outcomes

$$
\begin{aligned}
& A=\operatorname{sgn}\left\langle\mathbf{a}, \mathbf{S}_{A}\right\rangle=\operatorname{sgn}\left\{\quad \alpha\left\langle\mathbf{a}, \mathbf{S}_{0}\right\rangle-B \beta\langle\mathbf{a}, \mathbf{b}\rangle+A \gamma\right\} \\
& B=\operatorname{sgn}\left\langle\mathbf{b}, \mathbf{S}_{B}\right\rangle=\operatorname{sgn}\left\{-\alpha\left\langle\mathbf{b}, \mathbf{S}_{0}\right\rangle-A \beta\langle\mathbf{a}, \mathbf{b}\rangle+B \gamma\right\} .
\end{aligned}
$$

Problem: No Cauchy data!

„Self Fulfilling Prophecies"

Idea: Determine upper and lower bounds for the probability of $A \neq B$

$$
P\left(A \neq B \mid \varangle a, b=120^{\circ}\right)
$$

$$
\mathbb{P}(A \neq B \mid a, b)+\mathbb{P}(A \neq B \mid b, c)+\mathbb{P}(A \neq B \mid a, c)<1
$$

\Rightarrow

Bell's inequality violated!

Derivation of the Bell / CHSH inequality

Locality:

$$
\begin{aligned}
& \mathbb{P}(A \mid B, a, b, \lambda)=\mathbb{P}(A \mid a, \lambda), \\
& \mathbb{P}(B \mid A, a, b, \lambda)=\mathbb{P}(B \mid b, \lambda) .
\end{aligned}
$$

No Conspiracy
$\mathbb{P}(\lambda \mid a, b)=\mathbb{P}(\lambda)$.

Derivation of the Bell / CHSH inequality

Locality:

$$
\begin{aligned}
& \mathbb{P}(A \mid B, a, b, \lambda)=\mathbb{P}(A \mid a, \lambda), \\
& \mathbb{P}(B \mid A, a, b, \lambda)=\mathbb{P}(B \mid b, \lambda) .
\end{aligned}
$$

No Conspiracy
$\mathbb{P}(\lambda \mid a, b)=\mathbb{P}(\lambda)$.

Derivation of the Bell / CHSH inequality

Locality:

$$
\begin{aligned}
& \mathbb{P}(A \mid B, a, b, \lambda)=\mathbb{P}(A \mid a, \lambda), \\
& \mathbb{P}(B \mid A, a, b, \lambda)=\mathbb{P}(B \mid b, \lambda) .
\end{aligned}
$$

No Conspiracy
$\mathbb{P}(\lambda \mid a, b)=\mathbb{P}(\lambda)$.

Bell non-local

No direct space-like influences

No conspiracy

Violations of the Bell inequalities could be understood as the signature of advanced effects rather than instantaneous influences.

This understanding of quantum non-locality could be more compatible with our current understanding of relativistic space-time.

References (not complete)

Non-locality vs Relativity
Norsen 2009 Maudlin 2011
Relativistic GRW
Tumulka 2006 Bedingham, Dürr, Ghirardi, Goldstein, Tumulka, Zanghì 2013
Relativistic Bohmian Mechanics
Dürr, Goldstein, Norsen, Struyve, Zanghì 2013
Time-symmetric Electrodynamics
Wheeler and Feynman 1945, 1949
Time-symmetric Quantum Mechanics
Cramer 1980 Reznik and Aharonov 1995 Sutherland 2008
Philosophy of PhysicsPrice 1996

