Matter-wave interferometery of a free-falling nanoparticle

James Bateman (M. Rashid, D. Hempston, J. Vovrosh, & H. Ulbricht)

Matterwave Group School of Physics & Astronomy University of Southampton Southampton, SO17 1BJ, UK

jbateman@soton.ac.uk

Frascati, 28-30 April 2014

< □ > < @ > < 注 > < 注 > ... 注

Overview •	Schematic, theory, & decoherence	Experimental progress 0000	
Overview			Southampton
Interference	of 10 ⁶ amu particles wi	th optically resolval	ole fringes

- 1 Schematic, theory, & decoherence
- 2 Experimental progress
- 3 Summary & outlook

Near-field interferometry of a free-falling nanoparticle from a point-like source, Bateman, Nimmrichter, Hornberger, & Ulbricht, arXiv:1312.0500

< □ > < 同 >

Overview •	Schematic, theory, & decoherence	Experimental progress	
Overview			Southampton
Interference	of 10 ⁶ amu particles wit	h optically resolval	ole fringes

- 1 Schematic, theory, & decoherence
- 2 Experimental progress
- 3 Summary & outlook

Near-field interferometry of a free-falling nanoparticle from a point-like source, Bateman, Nimmrichter, Hornberger, & Ulbricht, arXiv:1312.0500

< □ > < 同 >

University of Southampton

"Macroscopicity of Mechanical Quantum Superposition States" Nimmrichter, Hornberger, PRL **110**, 160403 (2013)

James Bateman: jbateman@soton.ac.uk

Overview O	Schematic, theory, & decoherence	Experimental progress	

(a) Nanoparticle in dipole trap 10^6 amu (10 nm sphere) localised to < 30 nm

James Bateman: jbateman@soton.ac.uk

Matter-wave interferometery of a free-falling nanoparticle

Overview O	Schematic, theory, & decoherence	Experimental progress 0000	

- (a) Nanoparticle in dipole trap 10^6 amu (10 nm sphere) localised to < 30 nm
- (b) Phase grating 177 nm period ns, mJ, trippled Nd:YAG

James Bateman: jbateman@soton.ac.uk

Overview	Schematic, theory, & decoherence	Experimental progress	
o	●○○○○○	0000	

- (a) Nanoparticle in dipole trap 10^6 amu (10 nm sphere) localised to < 30 nm
- (b) Phase grating 177 nm period ns, mJ, trippled Nd:YAG
- (c) Glass slide Fixed fall time \approx 300 ms Near-field (Fresnel) Scaled Talbot effect

James Bateman: jbateman@soton.ac.uk

Overview	Schematic, theory, & decoherence	Experimental progress	
o	●○○○○○	0000	

- (a) Nanoparticle in dipole trap 10^6 amu (10 nm sphere) localised to < 30 nm
- (b) Phase grating 177 nm period ns, mJ, trippled Nd:YAG
- (c) Glass slide Fixed fall time \approx 300 ms Near-field (Fresnel) Scaled Talbot effect
- (d) Optical detection High NA with fitting to PSF

Overview	Sch
	000

Talbot Effect

- Near-field (Fresnel)
- Periodic reconstruction
- Far-field
 - \rightarrow diffraction orders

Colloquium: Quantum interference of clusters and molecules Hornberger, Gerlich, Haslinger, Nimmrichter, and Arndt, DOI: 10.1103/RevModPhys.84.157

James Bateman: jbateman@soton.ac.uk

Overview	

Summary & outlook

University of Southampton

Talbot Effect

- Near-field (Fresnel)
- Periodic reconstruction
- Far-field
 - \rightarrow diffraction orders
- Plane-wave
 - \rightarrow same period as grating
- Point-source
 - ightarrow geometrical scaling

Colloquium: Quantum interference of clusters and molecules Hornberger, Gerlich, Haslinger, Nimmrichter, and Arndt, DOI: 10.1103/RevModPhys.84.157

James Bateman: jbateman@soton.ac.uk

Overview	Schematic, theory, & decoherence	Experimental progress	Summary & outlook
	00000		

Initial thermal state of 200kHz harmonic trap

$$w_0(x,p) = \frac{1}{2\pi\sigma_x\sigma_p} \exp\left(-\frac{x^2}{2\sigma_x^2} - \frac{p^2}{2\sigma_p^2}\right)$$

- $\sigma_x \sim 10$ nm
- $\sigma_p/m \sim 10 {
 m mm/s}$
- Wigner \rightleftharpoons Charateristic

$$w_0(x,p) \rightleftharpoons \chi_0(s,q) = \exp\left(-\frac{\sigma_x^2 q^2 + \sigma_p^2 s^2}{2\hbar^2}\right)$$

James Bateman: jbateman@soton.ac.uk

Overview	Schematic, theory, & decoherence	Experimental progress	Summary & outlook
	00000		

Initial thermal state of 200kHz harmonic trap

- $\sigma_x \sim 10 {\rm nm}$
- $\sigma_p/m \sim 10 {\rm mm/s}$
- Wigner \rightleftharpoons Charateristic
- Fall for $t_1 = 160$ ms
- Shearing → *locally* well-defined momentum

$$w_0(x,p) = \frac{1}{2\pi\sigma_x\sigma_p} \exp\left(-\frac{x^2}{2\sigma_x^2} - \frac{p^2}{2\sigma_p^2}\right)$$

$$w_0(x,p) \rightleftharpoons \chi_0(s,q) = \exp\left(-\frac{\sigma_x^2 q^2 + \sigma_p^2 s^2}{2\hbar^2}\right)$$

University of Southampton

James Bateman: jbateman@soton.ac.uk

Overview	Schematic, theory, & decoherence	Experimental progress	Summary & outlook
	00000		

Initial thermal state of 200kHz harmonic trap

- $\sigma_x \sim 10 {\rm nm}$
- $\sigma_p/m \sim 10 {\rm mm/s}$
- Wigner \rightleftharpoons Charateristic
- Fall for $t_1 = 160$ ms
- Shearing → locally well-defined momentum

$$w_0(x,p) = \frac{1}{2\pi\sigma_x\sigma_p} \exp\left(-\frac{x^2}{2\sigma_x^2} - \frac{p^2}{2\sigma_p^2}\right)$$

$$w_{0}(x,p)
ightarrow \chi_{0}(s,q) = \exp\left(-rac{\sigma_{x}^{2}q^{2} + \sigma_{p}^{2}s^{2}}{2\hbar^{2}}
ight)$$

$$\chi_1(s,q) \approx \frac{\sqrt{2\pi\hbar}}{\sigma_p} \exp\left(-\frac{\sigma_x^2 q^2}{2\hbar^2}\right) \delta\left(s - \frac{qt_1}{m}\right)$$

University of Southampton

Overview	Schematic, theory, & decoherence	Experimental progress	Summary & outlook
	00000		

٦

Initial thermal state of 200kHz harmonic trap

- $\sigma_x \sim 10 {\rm nm}$
- $\sigma_p/m \sim 10 {
 m mm/s}$
- Wigner \rightleftharpoons Charateristic
- Fall for $t_1 = 160$ ms
- Shearing → locally well-defined momentum
- Grating interaction

$$w_0(x,p) = \frac{1}{2\pi\sigma_x\sigma_p} \exp\left(-\frac{x^2}{2\sigma_x^2} - \frac{p^2}{2\sigma_p^2}\right)$$

$$w_{0}(x,p) \rightleftharpoons \chi_{0}(s,q) = \exp\left(-rac{\sigma_{x}^{2}q^{2} + \sigma_{p}^{2}s^{2}}{2\hbar^{2}}
ight)$$

$$\chi_{1}(s,q) \approx rac{\sqrt{2\pi}\hbar}{\sigma_{p}} \exp\left(-rac{\sigma_{x}^{2}q^{2}}{2\hbar^{2}}\right) \delta\left(s-rac{qt_{1}}{m}\right)$$

University of Southampton

James Bateman: jbateman@soton.ac.uk

Overview	Schematic, theory, & decoherence	Experimental progress	Summary & outlook
	00000		

Initial thermal state of 200kHz harmonic trap

- $\sigma_x \sim 10$ nm
- $\sigma_p/m \sim 10 {
 m mm/s}$
- Wigner \rightleftharpoons Charateristic
- Fall for $t_1 = 160$ ms
- Shearing → locally well-defined momentum
- Grating interaction

$$w_0(x,p) = \frac{1}{2\pi\sigma_x\sigma_p} \exp\left(-\frac{x^2}{2\sigma_x^2} - \frac{p^2}{2\sigma_p^2}\right)$$

$$w_{0}(x,p) \rightleftharpoons \chi_{0}(s,q) = \exp\left(-rac{\sigma_{x}^{2}q^{2} + \sigma_{p}^{2}s^{2}}{2\hbar^{2}}
ight)$$

$$\chi_1(s,q) \approx \frac{\sqrt{2\pi\hbar}}{\sigma_p} \exp\left(-\frac{\sigma_x^2 q^2}{2\hbar^2}\right) \delta\left(s - \frac{qt_1}{m}\right)$$

$$\chi_1(s,q) \rightarrow \sum_n B_n(s/d) \chi_1(s,q+nh/d)$$

where $B_n(\xi) = J_n(\phi_0 \sin \pi \xi)$ or $J_n(\phi_0 \pi \xi)$

Overview	Schematic, theory, & decoherence	Experimental progress	Summary & outlook
	00000		

Initial thermal state of 200kHz harmonic trap

- $\sigma_x \sim 10 {\rm nm}$
- $\sigma_p/m \sim 10 {
 m mm/s}$
- Wigner \rightleftharpoons Charateristic
- Fall for $t_1 = 160$ ms
- Shearing → locally well-defined momentum
- Grating interaction
- Fall for $t_2 = 120$ ms
- Spatial distribution $\int w(x,p)dp = \mathcal{F}[\chi(0,q)](x)$

$$w_0(x,p) = \frac{1}{2\pi\sigma_x\sigma_p} \exp\left(-\frac{x^2}{2\sigma_x^2} - \frac{p^2}{2\sigma_p^2}\right)$$

$$w_{0}(x,p)
ightarrow \chi_{0}(s,q) = \exp\left(-rac{\sigma_{x}^{2}q^{2} + \sigma_{p}^{2}s^{2}}{2\hbar^{2}}
ight)$$

$$\chi_1(s,q) \approx \frac{\sqrt{2\pi\hbar}}{\sigma_p} \exp\left(-\frac{\sigma_x^2 q^2}{2\hbar^2}\right) \delta\left(s - \frac{qt_1}{m}\right)$$

$$\chi_1(s,q) \rightarrow \sum_n B_n(s/d) \chi_1(s,q+nh/d)$$

where
$$B_n(\xi) = J_n(\phi_0 \sin \pi \xi)$$
 or $J_n(\phi_0 \pi \xi)$
x)

University of Southampton

\sim					
()	VP	rv	16	≥v	
- ()					

Schematic, theory, & decoherence $\circ\circ\circ\circ\circ\circ\circ$

Experimental progress

Summary & outlook

Phase-space description: Spatial distributions

James Bateman: jbateman@soton.ac.uk

Matter-wave interferometery of a free-falling nanoparticle

	1/0	nı		
\sim	20	1 V		٧١

Schematic, theory, & decoherence $\circ\circ\circ\bullet\circ\circ$

Experimental progress

Summary & outlook

Phase-space description: Spatial distributions

James Bateman: jbateman@soton.ac.uk

	1/0	nı		
\sim	20	1 V		٧١

Schematic, theory, & decoherence 000000

Phase-space description: Spatial distributions

Overview	Schematic, theory, a	& decohe
	000000	

Summary & outlook 0

Decoherence via Blackbody radiation

- \blacksquare Typical blackbody wavelength: $\gtrsim 10 \mu m$
- Glass (dashed) absorbs; silicon (solid) is highly transparent

ence

Schematic,	theory,	&	decoher
000000			

Summary & outlook

Decoherence via Blackbody radiation

ence

James Bateman: jbateman@soton.ac.uk

Matter-wave interferometery of a free-falling nanoparticle

Schematic,	theory,	&	decohere
000000			

Summary & outlook 0

Decoherence via Blackbody radiation

nce

- Choose trap wavelength 1550nm:
- \rightarrow fiber laser technology
- \rightarrow some issues: free space/high power/imaging

Summary & outlook

Dipole Trapping at 1550nm

Refracting optics: aspherics/objectives

- Designed for visible ($\lambda \lesssim 1 \ \mu$ m)
- Significant aberrations at 1.5μm

James Bateman: jbateman@soton.ac.uk

Schematic, theory, & decoherence

Experimental progress •000 Summary & outlook

Dipole Trapping at 1550nm

Refracting optics: aspherics/objectives

- Designed for visible ($\lambda \lesssim 1 \ \mu$ m)
- Significant aberrations at 1.5μm

Reflecting optics: parabolic mirror

- Inherently achromatic
- Single-point diamond turning
- 15nm roughness (λ/100)
- $\mathbf{I} < 1 \mu m$ form accuracy
- NA = 0.995
- Working distance = $900 \mu m$

Overview O	Schematic, theory, & decoherence 000000	Experimental progress 0●00	
Positio	n detection		

- Sense position and apply feedback [1,2]
- \blacksquare Centre-of-mass cooling to $\sim 10 \text{mK}$ for $\sim 100 \text{nm}$ particle [2]

Li, Kheifets, Raizen, Nat. Phys. **7** 527 (2011)
 Gieseler, Deutsch, Quidant, Novotny, PRL **109** 103602 (2012)

James Bateman: jbateman@soton.ac.uk

Overview	Schematic, theory, & decoherence	Experimental progress	
O	000000	0●00	

Position detection

- Sense position and apply feedback [1,2]
- \blacksquare Centre-of-mass cooling to $\sim 10 \textrm{mK}$ for $\sim 100 \textrm{nm}$ particle [2]

Transmission imaging

- $\bullet \ \partial_{\mathbf{x}}\phi\sim 1/f$
- $\blacksquare \ \partial_z \phi \sim 1/z_R$
- $E_{\text{Ref}} \gg E_{\text{Sca}}$

University of Southampton

Li, Kheifets, Raizen, Nat. Phys. 7 527 (2011)
 Gieseler, Deutsch, Quidant, Novotny, PRL 109 103602 (2012)

James Bateman: jbateman@soton.ac.uk

Overview O	Schematic, theory, & c 000000	lecoherence	Experimental progress 0●00	
Position	detection			
SenseCentre	e position and ap re-of-mass coolir	oply feedback $_{ m ng}$ to $\sim 10 { m mk}$	[1,2] ζ for \sim 100nm par	ticle [2]
Transmiss $\partial_x \phi \phi$ $\partial_z \phi \phi$ E_{Ref}	ion imaging ~ 1/f ~ 1/z _R ≫ E _{Sca}	Input light		Dz Dz
Reflection $\partial_x \phi \phi$ $\partial_z \phi =$ $E_{\text{Ref}} \phi$	imaging $\sim 1/f$ $= 1/\frac{1}{2}\lambda$ $\sim E_{Sca}$	Input light Refle	cted light	
[1] Li, Kheifets, Ra[2] Gieseler, Deutsc	izen, Nat. Phys. 7 527 (201 h, Quidant, Novotny, PRL	11) 109 103602 (2012)	< □ > < @ >	<=> <=> <=> <=> < = <=> < =

University of Southampton

James Bateman: jbateman@soton.ac.uk

Summary & outlook 0

Position detection \rightarrow feedback cooling

Done:

- Trap signal
- Intensity modulation \checkmark

[1] Li, Kheifets, Raizen, Nat. Phys. **7** 527 (2011)

[2] Gieseler, Deutsch, Quidant, Novotny, PRL 109 103602 (2012)

James Bateman: jbateman@soton.ac.uk

Matter-wave interferometery of a free-falling nanoparticle

Experimental progress $00 \bullet 0$

Summary & outlook 0

Position detection \rightarrow feedback cooling

Done:

- Trap signal ✓
- Intensity modulation \checkmark

To do:

- Close loop with FPGA
- Repeat for transverse
- Pump down & cool

[1] Li, Kheifets, Raizen, Nat. Phys. 7 527 (2011)

[2] Gieseler, Deutsch, Quidant, Novotny, PRL 109 103602 (2012)

James Bateman: jbateman@soton.ac.uk

Matter-wave interferometery of a free-falling nanoparticle

Experimental progress $00 \bullet 0$

Summary & outlook 0

Position detection \rightarrow feedback cooling

Done:

- Trap signal ✓
- Intensity modulation \checkmark

To do:

- Close loop with FPGA (\checkmark)
- Repeat for transverse
- Pump down & cool

[1] Li, Kheifets, Raizen, Nat. Phys. 7 527 (2011)

[2] Gieseler, Deutsch, Quidant, Novotny, PRL 109 103602 (2012)

James Bateman: jbateman@soton.ac.uk

Matter-wave interferometery of a free-falling nanoparticle

Overview O	Schematic, theory, & decoherence	Experimental progress ○○○●	

Particle source

Requirements:

- Pure Silicon
- Produce in UHV

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ─ 臣 ─ 釣�?

James Bateman: jbateman@soton.ac.uk

Matter-wave interferometery of a free-falling nanoparticle

Overview	

Particle source

Requirements:

- Pure Silicon
- Produce in UHV
- Approach (see also [1]):
 - Nd:YAG ablation (ns; mJ; 532nm)
 - Sub-200nm particles (limited by SEM resolution)

To do:

- Size selection
- Capture in UHV...

Matter-wave interferometery of a free-falling nanoparticle

Summary & outlook

Summary & outlook

So far

- Theory including decoherence
- Use silicon, not glass
- 1550nm \implies reflective optics
- Position sensing via back-scattering
- Crude particle source

To do

- Feedback cooling (\checkmark)
- Capture Si in UHV
- ... then grating and imaging

