

Collective motion and chain representation of non-Markovian dynamics

Luca Ferialdi
Mathematisches Institut
LMU München

Outline

- Opens systems and non-Markovian dynamics
- Indipendent oscillators model
- Collective motion and chain representation
- Future work

Open quantum systems

- Interaction between the system and the environment

$$
\rho=\rho_{\mathrm{S}} \otimes \rho_{\mathrm{E}} \quad H=H_{\mathrm{S}}+H_{\mathrm{E}}+H_{\mathrm{INT}}
$$

- General evoltion has a complicated form

$$
\frac{d}{d t} \rho_{\mathrm{S}}(t)=-i \operatorname{tr}_{\mathrm{E}}[H, \rho(t)] \longrightarrow \quad \begin{aligned}
& \text { it is necessary to introduce } \\
& \text { some approximation }
\end{aligned}
$$

Markovian vs non-Markovian dynamics

- Markovian dynamics: the evolution has no memory terms
$\frac{d}{d t} \rho_{\mathrm{S}}(t)=-i\left[H, \rho_{\mathrm{S}}(t)\right]+\mathcal{D}\left[\rho_{\mathrm{S}}(t)\right] \quad \mathcal{D}\left[\rho_{\mathrm{s}}(t)\right]=\sum_{k} \gamma_{k}\left(A_{k} \rho A_{k}^{\dagger}-\frac{1}{2}\left\{A_{k}^{\dagger} A_{k}, \rho\right\}\right)$
- Physics: the bath timescale is much faster than the system
- Non-Markovian dynamics \longrightarrow memory terms

$$
\frac{d}{d t} \rho_{\mathrm{S}}(t)=\int_{t_{0}}^{t} d s K(t, s) \rho_{\mathrm{s}}(s)
$$

Why non-Markovian dynamics?

- Theoretical: \longrightarrow statistical mechanics
collapse models

Non-Markovian dynamics

- "Non-Markovian" is all what goes beyond the Markov approximation, no characterization is implied
$\stackrel{H}{1}$
one needs to introduce a characterization, e.g. a particular model
- All models proposed so far are phenomenological \downarrow
lack of description emerging from first principles

The independent oscillators model

- System bilinearly coupled to N independent harmonic oscillators
- Hamiltonian

$$
H=\frac{p^{2}}{2 M}+V(x)+x \sum_{k=1}^{N} c_{k} x_{k}+\sum_{k=1}^{N} \frac{1}{2}\left(p_{k}^{2}+\omega_{k}^{2} x_{k}^{2}\right)
$$

- Environmental coupling is determined by the spectral density

$$
J(\omega)=\frac{\pi}{2} \sum_{k} \frac{c_{k}^{2}}{\omega_{k}} \delta\left(\omega-\omega_{k}\right)
$$

The independent oscillators model

- Generalized Langevin equation (GLE)

$$
M \ddot{x}(t)+M \int_{0}^{t} d s K(t-s) \dot{x}(s)+V_{x}(s)=f(t)
$$

where $K(t-s), f(t)$ are functions of $J(\omega),\left\{x_{k}(0), \dot{x}_{k}(0)\right\}$

- Well known model:

Quantum Brownian Motion
Master equation
Fluctuation dissipation relation

What do we learn about NM?

- We do learn:
new non-Markovian (or memory) effects
how they affect the system's dynamics
- We do not learn: how they arise from the microscopic motion

$$
\downarrow
$$

aim of the project is to understand how non-Markovian effects emerge from microscopic motion

The chain model

- System coupled to a chain of N harmonic oscillators

mom mom

- Hamiltonian

$$
H=\frac{p^{2}}{2 M}+V(x)+D x X_{1}+\sum_{k=2}^{N} D_{k-1} X_{k-1} X_{k}+\sum_{k=1}^{N} \frac{1}{2}\left(P_{k}^{2}+\Omega_{k}^{2} X_{k}^{2}\right)
$$

- It gives a more physical idea of propagation

more suitable to study short time effects

The chain representation

- Idea: chain representation of the independent oscillators bath

Independent

$\left(\begin{array}{c}\ddot{x}_{1}(t) \\ \ddot{x}_{2}(t) \\ \ddot{x}_{3}(t) \\ \vdots\end{array}\right)=-\left(\begin{array}{cccc}\omega_{1}^{2} & 0 & 0 & \ldots \\ 0 & \omega_{2}^{2} & 0 & \ldots \\ 0 & 0 & \omega_{3}^{2} & \ldots \\ \vdots & \vdots & \vdots & \ddots\end{array}\right)\left(\begin{array}{c}x_{1}(t) \\ x_{2}(t) \\ x_{3}(t) \\ \vdots\end{array}\right)$

$$
\left(\begin{array}{c}
\ddot{X}_{1}(t) \\
\ddot{X}_{2}(t) \\
\ddot{X}_{3}(t) \\
\vdots
\end{array}\right)=-\left(\begin{array}{cccc}
\Omega_{1}^{2} & -D_{1} & 0 & \cdots \\
-D_{1} & \Omega_{2}^{2} & -D_{2} & \cdots \\
0 & -D_{2} & \Omega_{3}^{2} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)\left(\begin{array}{c}
X_{1}(t) \\
X_{2}(t) \\
X_{3}(t) \\
\vdots
\end{array}\right)
$$

 inverse eigenvalue problem

- Collective motion: $\quad X_{k}=\sum_{j} Q_{k j} x_{j}$

The chain representation

- Short times
$\rightarrow \quad$ truncated chain
looking for faster simulations
- First proposed by chemical physicists
complicated transformation through hierarchical baths
fitting parameters with observed dynamics
- Approximation for the kernel of the GLE:

$$
K(t) \simeq K^{(n)}(t)+o\left(t^{4 n}\right)
$$

Where do we stand?

- The inverse eigenvalue problem has unique solution
- General evolution for the chain model has a complicated form no more a GLE but nested integrals
- Final goal: Prove that

$$
\forall n, \exists T: \tilde{x}_{\mathrm{TC}}^{(\mathrm{n})}(t)=x_{\mathrm{IO}}(t), \forall t \leq T
$$

