JOHN TEMPLETON FOUNDATION
SUPPORTING SCIENCE-INVESTING IN THE BIG QUESTIONS

Why is not so easy to change Quantum Mechanics and one of the only possible changes is GRW

Giacomo Mauro D'Ariano
Università degli Studi di Pavia

Is quantum theory exact? The endeavor for the theory beyond standard quantum mechanics.

Laboratori Nazionali di Frascati, April 292014
G. M. D'Ariano and P. Perinotti, arXiv:1306.1934
A. Bibeau-Delisle, A. Bisio, G. M. D'Ariano, P. Perinotti, A. Tosini, arXiv:1310.6760
A. Bisio, G. M. D'Ariano, A. Tosini, arXiv:1212.2839

TOC

Problems with GRW

Quantum Mechanics = Quantum Theory+Mechanics

1. Information-theoretic Axioms for QT

- Operational probabilistic theory (OPT) framework

2. $\mathrm{QT} \rightarrow \mathrm{QFT} \rightarrow \mathrm{QM}$
3. Which modifications destroy the epistemological value of QT, and why GRW is compatible with (1)
4. Proposal: through (2) we can make GRW Lorentz covariant and for QFT

Lorentz covariance

Indistinguishable particles

QFT

A. Rimini (private comm.)
|PI Selected for a Viewpoint in Physics

Historical background

- The experience in Quantum Information has led us to look at Quantum Theory (QT) under a completely new angle
- QT is a theory of information

PHYSICAL REVIEW A 84, 012311 (2011)

Informational derivation of quantum theory

Giulio Chiribella*

Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Ontario, Canada N2L $2 Y 5^{\dagger}$
Giacomo Mauro D’Ariano ${ }^{\ddagger}$ and Paolo Perinotti ${ }^{\S}$
QUIT Group, Dipartimento di Fisica "A. Volta" and INFN Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy" (Received 29 November 2010; published 11 July 2011)
We derive quantum theory from purely informational principles. Five elementary axioms-causality, perfect distinguishability, ideal compression, local distinguishability, and pure conditioning-define a broad class of theories of information processing that can be regarded as standard. One postulate-purification-singles out quantum theory within this class.

DOI: 10.1103/PhysRevA.84.012311
PACS number(s): 03.67.Ac, 03.65.Ta

Principles for Quantum Theory

P1. Causality
P2. Local discriminability
P3. Purification*
P4. Atomicity of composition
P5. Perfect distinguishability
P6. Lossless Compressibility

Book from CUP (by the end of 2014)

Principles for Quantum Theory

The informational framework

Logic \subset Probability \subset OPT
joint probabilities + connectivity $p(i, j, k, \ldots \mid$ circuit $)$
systems

input
output

DAG

Principles for Quantum Theory

The informational framework
Logic \subset Probability \subset OPT
joint probabilities + connectivity
$p(i, j, k, \ldots \mid$ circuit $)$

$$
\rho_{i} \mathrm{~B}:=\frac{\mathrm{I}}{\mathscr{A}_{i}} \mathrm{~B}
$$

preparation

$$
\mathrm{A} a_{j}:=\frac{\mathrm{A}}{\mathscr{A}_{j}}
$$

observation

$$
p(i, j, k, l, m, n, p, q \mid \text { circuit })
$$

Principles for
 Quantum Theory

The informational framework

Logic \subset Probability \subset OPT

Leaf:
Maximal set of
independent systems

Principles for
 Quantum Theory

The informational framework

Logic \subset Probability \subset OPT
joint probabilities + connectivity
$p(i, j, k, \ldots \mid$ circuit $)$

$$
p(i, j, k, l, m, n, p, q \mid \text { circuit })
$$

Principles for Quantum Theory

The informational framework

Logic \subset Probability \subset OPT
joint probabilities + connectivity

Probabilistic equivalence classes

transformation

state

effect

$$
p(i, j, k, l, m, n, p, q \mid \text { circuit })
$$

Principles for Quantum Theory

P1. Causality

convexity

P2. Local discriminability
P3. Purification
P4. Atomicity of composition
P5. Perfect distinguishability
P6. Lossless Compressibility
The probability of preparations is independent of the choice of observations

Control of experiment

no signaling without interaction

Principles for Quantum Theory

P1. Causality

P2. Local discriminability
P3. Purification
P4. Atomicity of composition
P5. Perfect distinguishability
P6. Lossless Compressibility
It is possible to discriminate any pair of states of composite systems using only local measurements.

Origin of the complex tensor product

Local characterization of transformations

Principles for Quantum Theory

P1. Causality

P2. Local discriminability
P3. Purification
P4. Atomicity of composition
P5. Perfect distinguishability
P6. Lossless Compressibility

The composition of two atomic transformations is atomic

Principles for Quantum Theory

P1. Causality

P2. Local discriminability

P3. Purification

P4. Atomicity of composition
P5. Perfect distinguishability
P6. Lossless Compressibility
Every state that is not completely mixed (i.e.
on the boundary of the convex) can be
perfectly distinguished from some other state.

Principles for Quantum Theory

P1. Causality

P2. Local discriminability
P3. Purification
P4. Atomicity of composition
P5. Perfect distinguishability
P6. Lossless Compressibility

For states that are not completely mixed there exists an ideal compression scheme

Any face of the convex set of states is the convex set of states of some other system

Encoding only unknown information

Principles for Quantum Theory

$\rho \quad \mathrm{A}=\Psi^{\frac{\mathrm{A}}{\mathrm{B}}-e}$

P1. Causality

P2. Local discriminability
P3. Purification
P4. Atomicity of composition
P5. Perfect distinguishability
P6. Lossless Compressibility
Every state has a purification. For fixed purifying system, every two purifications of the same state are connected by a reversible transformation on the purifying system

Principles for Quantum Theory

P1. Causality

P2. Local discriminability
P3. Purification
P4. Atomicity of composition
P5. Perfect distinguishability
P6. Lossless Compressibility
Every state has a purification. For fixed purifying system, every two purifications of the same state are connected by a reversible transformation on the purifying system

Consequences

1. Existence of entangled states:

the purification of a mixed state is an entangled state; the marginal of a pure entangled state is a mixed state;
2. Every two normalized pure states of the same system are connected by a reversible transformation

$$
\psi^{\prime} \mathrm{B}=\psi \quad \mathrm{B} \quad \mathscr{U} \quad \mathrm{~B}
$$

3. Steering: Let $\boldsymbol{\Psi}$ purification of ρ. The for every ensemble decomposition $\rho=\sum_{x} p_{x} a_{x}$ there exists a measurement $\left\{b_{x}\right\}$, such that

4. Process tomography (faithful state):

[^0]
Principles for Quantum Theory

P1. Causality

P2. Local discriminability
P3. Purification
P4. Atomicity of composition
P5. Perfect distinguishability
P6. Lossless Compressibility
Every state has a purification. For fixed purifying system, every two purifications of the same state are connected by a reversible transformation on the purifying system

Consequences

6. Teleportation

7. Reversible dilation of "channels"

8. Reversible dilation of "instruments"

9. State-transformation cone isomorphism
10. Rev. transform. for a system make a Lie group

Moving to the Mechanics

- The Weyl, Dirac, and Maxwell equations are derived from information-theoretic principles only, without assuming SR
- Only denumerable quantum systems in interaction
- QCA to be regarded as a theory unifying scales from Planck to Fermi (no continuum limit!)
- QFT is recovered in the relativistic limit ($k \ll 1$)
- In the ultra-relativistic limit (Planck scale) Lorentz covariance is an approximate symmetry, and one has the Doubly Special Relativity of Amelino-Camelia/Smolin/Magueijo

Additional principles

Min algorithmic complexity of the processing

- linearity
- unitarity
- locality
- homogeneity
- transitivity
- isotropy
- minimal-dimension

GOOD FEATURES

1. no SR assumed: emergence of relativistic quantum field and space-time
2. quantum ab-initio
3. no divergencies and all the problems from the continuum
4. no "violations" of causality
5. computable
6. dynamics stable (dispersive Schrödinger equation for narrow-band states valid at all scales)
7. solves the problem of localization in QFT
8. natural scenario for the holographic principle

the theoretical minimum

QFT from info-principles

- System $\psi(g), \psi s$-dimensional field operator, labeled by $g \in G,|G| \leq \aleph$
- minimal-dimension
- linearity
- homogeneity
- transitivity
- $s>1$ ($s=1$ trivial evolution)
- Interactions described by transition matrices $A_{g g}{ }^{\prime} \in M_{s}(C)$ between systems $g \in G$: single evolution step $\psi(g) \rightarrow \psi(g)=\sum_{g^{\prime} \in S_{g}} A_{g g^{\prime}} \psi\left(g^{\prime}\right)$ $S_{g} \subseteq G$ set of systems interacting with g
- $\left\{A_{\left.g g^{\prime}\right\} g^{\prime} \in S_{s}}\right.$ independent of g, Cayley graph $K\left(G, S_{+}\right)$
- G group, $G=<h_{1}, h_{2}, \ldots, h_{N}, \mid r_{1}, r_{2}, \ldots, r_{M}>$
- $S_{g}=S g, S:=\left\{h_{1}, h_{2}, \ldots, h_{N}\right\}, S=S_{+} \cup S$., $S_{-}=S_{+}^{-1}$

the theoretical minimum

QFT from info-principles

- minimal-dimension
- linearity
- homogeneity
- transitivity
- locality
- unitarity

Problem: find $\left\{A_{n}\right\} \in M_{s}(C)$ such that $A^{\dagger} A=1$

- isotropy

G finitely-generated group, $K\left(G, S_{+}\right)$qiisometrically embeds in R^{3}, G contains a free Abelian subgroup A of finite index, with $\operatorname{rank}(A) \leq 3$ (Misha Kapovich, priv. comm.)
unitary s-dimensional (projective) $\{L /\}$ of L determines the statistics of ψ, if Fermion, Boson, Anyon

- System $\psi(g), \psi s$-dimensional field operator, labeled by $g \in G,|G| \leq \aleph$
- $s>1$ ($s=1$ trivial evolution)
- Interactions described by transition matrices $A_{g g}{ }^{\prime} \in M_{s}(C)$ between systems $g \in G$:
single evolution step $\psi(g) \rightarrow \psi(g)=\sum_{g^{\prime} \in S_{g}} A_{g g^{\prime}} \psi\left(g^{\prime}\right)$ $S_{g} \subseteq G$ set of systems interacting with g
- $\left\{A_{\left.g g^{\prime}\right\} g^{\prime} \in S_{s}}\right.$ independent of g, Cayley graph $K\left(G, S_{+}\right)$
- G group, $G=\left\langle h_{1}, h_{2}, \ldots, h_{N},\right| r_{1}, r_{2}, \ldots, r_{M}>$
- $S_{g}=S g, S:=\left\{h_{1}, h_{2}, \ldots, h_{N}\right\}, S=S_{+} \cup S$., $S_{-}=S_{+}^{-1}$
- $|S|<\infty \Leftrightarrow G$ finitely generated

- $A_{h} \neq 0 \Leftrightarrow A_{n}^{-1} \neq 0$
- There exists a group L of permutations of S_{+}, transitive over S_{+}that leaves $K\left(G, S_{+}\right)$invariant
- a nontrivial unitary s-dimensional (projective) representation $\{L\}\}$ of L such that:

$$
A=\sum_{h \in S} T_{h} \otimes A_{h}=\sum_{h \in S} T_{l h} \otimes L_{l} A_{h} L_{l}^{\dagger}
$$

The Weyl QCA

Minimal dimension for nontrivial unitary $A: s=2$

- Unitarity \Rightarrow the only possible G is the BCC!!
- $\Rightarrow A_{h}$ are proportional to rank-one projectors
- Isotropy \Rightarrow Fermionic $\psi(\mathrm{d}=3)$

$$
A=\int_{B} d \mathbf{k}|\mathbf{k}\rangle\langle\mathbf{k}| \otimes A_{\mathbf{k}}
$$

Two QCAs connected by CPT

$$
A_{\mathbf{k}}^{ \pm}=-i \sigma_{x}\left(s_{x} c_{y} c_{z} \pm c_{x} s_{y} s_{z}\right)
$$

$$
-i\left(\pm \sigma_{y}\right)\left(c_{x} s_{y} c_{z} \mp s_{x} c_{y} s_{z}\right)
$$

$$
-i \sigma_{z}\left(c_{x} c_{y} s_{z} \pm s_{x} s_{y} c_{z}\right)
$$

$$
s_{\alpha}=\sin \frac{k_{\alpha}}{\sqrt{3}}
$$

$$
+I\left(c_{x} c_{y} c_{z} \mp s_{x} s_{y} s_{z}\right)
$$

$$
c_{\alpha}=\cos \frac{k_{\alpha}}{\sqrt{3}}
$$

Dirac QCA

Local coupling: $A_{\boldsymbol{k}}$ coupled with inverse with off-diagonal identity block matrix

$$
\begin{aligned}
& E_{\mathbf{k}}^{ \pm}=\left(\begin{array}{cc}
n A_{\mathbf{k}}^{ \pm} & i m I \\
i m I & n A_{\mathbf{k}}^{ \pm}
\end{array}\right) \\
& n^{2}+m^{2}=1
\end{aligned}
$$

$E_{\mathbf{k}}^{ \pm}$CPT-connected!
$\omega_{ \pm}^{E}(\mathbf{k})=\cos ^{-1}\left[n\left(c_{x} c_{y} c_{z} \pm s_{x} s_{y} s_{z}\right)\right]$

Dirac in relativistic limit $\quad k \ll 1$
n^{-1} : refraction index

Maxwell QCA

$M_{\mathbf{k}}=A_{\mathrm{k}}^{\dagger} \otimes A_{\mathbf{k}}$

$$
F^{\mu}(\mathbf{k})=\int \frac{\mathrm{d} \mathbf{q}}{2 \pi} f(\mathbf{q}) \tilde{\psi}\left(\frac{\mathbf{k}}{2}-\mathbf{q}\right) \sigma^{\mu} \varphi\left(\frac{\mathbf{k}}{2}+\mathbf{q}\right)
$$

Maxwell in relativistic limit $k \ll 1$
Boson: emergent from convolution of fermions
(De Broglie neutrino-theory of photon)

Bisio, D’Ariano,
Perinotti

Universal constants of QCA theory

Conversion to dimensional units

$l_{P} \quad t_{P} \quad m_{P} \quad$ fundamental system
 [L] [T] [M]
 (Wilczek)

t_{p} : automaton time-step m_{p} : bound for particle mass

$$
\begin{array}{ll}
m_{g}=m m_{P} & p=\frac{\hbar k}{\sqrt{3} l_{P}} \\
c:=\frac{l_{P}}{t_{P}} & \hbar=m_{P} l_{P} c
\end{array}
$$

Dirac emerging from the QCA

fidelity with Dirac evolution for a narrowband packet in the relativistic limit $k \simeq m \ll 1$

$$
F=|\langle\exp [-i N \Delta(\mathbf{k})]\rangle| \quad \omega^{E}(\mathbf{k})=\sqrt{\mathbf{k}^{2}+m^{2}}
$$

$\Delta(\mathbf{k}):=\left(m^{2}+\frac{k^{2}}{3}\right)^{\frac{1}{2}}-\omega^{E}(\mathbf{k})$

$$
=\frac{\sqrt{3} k_{x} k_{y} k_{z}}{\left(m^{2}+\frac{k^{2}}{3}\right)^{\frac{1}{2}}}-\frac{3\left(k_{x} k_{y} k_{z}\right)^{2}}{\left(m^{2}+\frac{k^{2}}{3}\right)^{\frac{3}{2}}}+\frac{1}{24}\left(m^{2}+\frac{k^{2}}{3}\right)^{\frac{3}{2}}+\mathcal{O}\left(k^{4}+N^{-1} k^{2}\right)
$$

relativistic proton: $N \simeq m^{-3}=2.2 * 10^{57} \Rightarrow t=1.2 * 10^{14} \mathrm{~s}=3.7 * 10^{6} \mathrm{y}$
UHECRs: $k=10^{-8} \gg m \Rightarrow N \simeq k^{-2}=10^{16} \Rightarrow 5 * 10^{-28} \mathrm{~s}$

2d automaton

- Evolution of a narrow-band particle-state
- Evolution of a localized state

Particle state: $\mathrm{k}_{0} \stackrel{\mathrm{t}}{=} 0, \mathrm{~m}=0.15, \sigma=40$. Oscillation frequency $v=0.048$

The general dispersive Schrödinger equation

$$
i \partial_{t} e^{-i \mathbf{k}_{0} \cdot \mathbf{x}+i \omega_{0} t} \psi(\mathbf{k}, t)=s\left[\omega(\mathbf{k})-\omega_{0}\right] e^{-i \mathbf{k}_{0} \cdot \mathbf{x}+i \omega_{0} t} \psi(\mathbf{k}, t)
$$

$$
i \partial_{t} \tilde{\psi}(\mathbf{k}, t)=s\left[\omega(\mathbf{k})-\omega_{0}\right] \tilde{\psi}(\mathbf{k}, t)
$$

$$
i \partial_{t} \tilde{\psi}(\mathbf{x}, t)=s\left[\mathbf{v} \cdot \boldsymbol{\nabla}+\frac{1}{2} \mathbf{D} \cdot \boldsymbol{\nabla} \nabla\right] \tilde{\psi}(\mathbf{x}, t)
$$

$$
\begin{aligned}
& \mathbf{v}=\left(\boldsymbol{\nabla}_{\mathbf{k}} \omega\right)\left(\mathbf{k}_{0}\right) \\
& \mathbf{D}=\left(\boldsymbol{\nabla}_{\mathbf{k}} \boldsymbol{\nabla}_{\mathbf{k}} \omega\right)\left(\mathbf{k}_{0}\right)
\end{aligned}
$$

Bisio, D'Ariano, Tosini, arXiv:1212.2839

Planck-scale effects: Lorentz covariance distortion

Transformations that leave the dispersion relation invariant

$$
\omega^{(\pm)}(\mathrm{k})
$$

$$
\omega_{E}(k):= \pm \cos ^{-1}\left(\sqrt{1-m^{2}} \cos k\right)
$$

k

Planck-scale effects: Lorentz covariance distortion

Delocalization under boost

$$
\begin{aligned}
|\psi\rangle=\int \mathrm{d} k \mu(k) \hat{g}(k)|k\rangle \xrightarrow{L_{B}^{D}} & \int \mathrm{~d} k \mu(k) \hat{g}(k)\left|k^{\prime}\right\rangle= \\
& =\int \mathrm{d} k \mu\left(k^{\prime}\right) \hat{g}\left(k\left(k^{\prime}\right)\right)\left|k^{\prime}\right\rangle
\end{aligned}
$$

For narrow-band states we can linearize Lorentz transformations around $k=k_{0}$ and we get k dependent Lorentz transformations

Relative locality

R. Schützhold and W. G. Unruh, J. Exp. Theor. Phys. Lett. 78431 (2003)
G. Amelino-Camelia, L. Freidel, J. Kowalski-Glikman, and L. Smolin, arXiv:1106.0313 (2011)

Modifications of QM

Problems with GRW

Lorentz covariance

Indistinguishable particles

QFT

A. Rimini (private comm.)

A proposed solution

GRW of $\psi^{\dagger} \psi(g)$

 homogeneous and isotropic

GRW for particle position

THANK YOU!

A Quantum-Digital Universe (ID: 43796)

Alessandro Tosini

Nicola Mosco

Items for discussion

- QT is a theory of information
- The Weyl, Dirac, and Maxwell equations are derived from information-theoretic principles only, without assuming SR
- Only denumerable quantum systems in interaction
- QCA theory to be regarded as a theory unifying scales from Planck to Fermi (no continuum limit!)
- QFT is recovered in the relativistic limit ($k \ll 1$)
- In the ultra-relativistic limit (Planck scale) Lorentz covariance is an approximate symmetry, and one has the Doubly Special Relativity of Amelino-Camelia/Smolin/Magueijo

GOOD FEATURES

1. no SR assumed: emergence of relativistic quantum field and space-time
2. quantum ab-initio
3. no divergencies and all the problems from the continuum
4. no "violations" of causality
5. computable
6. dynamics stable (dispersive Schrödinger equation for narrow-band states valid at all scales)
7. solves the problem of localization in QFT
8. natural scenario for the holographic principle

[^0]: 5. No information without disturbance
