Workshop: Is quantum theory exact? The endeavor for the theory beyond standard quantum mechanics

DISSIPATIVE EXTENSION OF THE GHIRARDI-RIMINI-WEBER MODEL

ANDREA SMIRNE & ANGELO BASSI

In collaboration with:

Bassano Vacchini from the University of Milan

Frascati, 30 April 2014

MOTIVATION: THE GRW MODEL AND THE ENERGY DIVERGENCE

Collapse models: challenging the superposition principle

O Unified description of microscopic and macroscopic systems

No superposition of <u>macroscopic</u> systems

A. Bassi & G.C. Ghirardi, Phys. Rep. 2003A. Bassi, K. Lochan, S. Satin, T.P. Singh & H. Ulbricht, Rev. Mod. Phys. 2013

O Usual Schrödinger evolution

G.C. Ghirardi, A. Rimini and T. Weber, Phys. Rev. A 1986

Distribution of the jumps

Probability distribution of the localization position:

 $p(y) = \|L_y(\widehat{X})|\psi(t)\rangle\|^2$

Dynamical <u>derivation</u> of the Born rule

Poisson time-distribution of the jumps

C Localization rate for one nucleon $\lambda = 10^{-16} s^{-1}$ parameter

Microscopic systems are NOT affected by the localization mechanism!

Amplification mechanism: macroscopic systems are strongly affected !

Energy divergence

Energy divergence

Energy divergence

The average energy of the system diverges linearly in time, with a rate $\xi = \frac{\hbar^2 \lambda}{4Mr_c^2} ~\approx 10^{-25} eV \, s^{-1}$

Why is it important to study this (very slow) energy increase ?

- Re-establishment of the energy conservation principle
- Possible modifications of the testable predictions of the model

S. Adler & A. Bassi, Science, 325 (2009)

S. Adler JPA, 40 (2007)

 2^{nd} strongest bound on $\Lambda \parallel$

Secular energy increase compatible with **experimental data**

EXTENSION OF THE GRW MODEL: INCLUSION OF DISSIPATION

A. Smirne, B. Vacchini & A. Bassi, in preparation (2014)

Master equation

Statistical operator
$$\hat{\rho}(t) \equiv \mathbb{E}[|\psi(t)\rangle\langle\psi(t)|]$$

$$\frac{d}{dt}\hat{\rho}(t) = -\frac{i}{\hbar}\left[\hat{H}, \hat{\rho}(t)\right] + \lambda \left(\int dy L_y(\hat{X})\hat{\rho}(t)L_y(\hat{X}) - \hat{\rho}(t)\right)$$

$$= -\frac{i}{\hbar}\left[\hat{H}, \hat{\rho}(t)\right] + \underline{\lambda}\left(\int dQ e^{\frac{i}{\hbar}Q\hat{X}}G(Q)\rho(t)G(Q)e^{-\frac{i}{\hbar}Q\hat{X}} - \rho(t)\right)$$
Fourier Transform: $L_y(\hat{X}) = \int \frac{dQ}{\sqrt{2\pi\hbar}} e^{\frac{i}{\hbar}Q(\hat{X}-y)}G(Q)$
Describes also recoil-free collisional decoherence
$$G(Q) = \sqrt{\frac{r_c}{\sqrt{\pi\hbar}}} \exp\left(-\frac{r_c^2Q^2}{2\hbar^2}\right)$$
NO DISSIPATION

O To include dissipation

$$G(Q) \longrightarrow G(Q, \widehat{P})$$

Dissipative jump operators

$$L_{y}(\widehat{X},\widehat{P}) = \int \frac{dQ}{\sqrt{2\pi\hbar}} e^{\frac{i}{\hbar}Q(\widehat{X}-y)} G(Q,\widehat{P})$$

$$\left(\frac{r_{c}}{\sqrt{\pi\hbar}} + \frac{1}{2\sqrt{\pi}Mv_{\eta}}\right)^{1/2} e^{-\frac{1}{2}\left(\left(\frac{r_{c}}{\hbar} + \frac{1}{2Mv_{\eta}}\right)Q + \frac{\widehat{P}}{Mv_{\eta}}\right)^{2}}$$
New parameter $v_{\eta} = \frac{4k_{B}Tr_{C}}{\hbar}$

Schrödinger evolution between the jumps

• Jumps given by
$$|\psi(t)\rangle \longrightarrow |\psi_y(t)\rangle \equiv \frac{L_y(\widehat{X}, \widehat{P})|\psi(t)\rangle}{\|L_y(\widehat{X}, \widehat{P})|\psi(t)\rangle\|}$$

- Probability distribution of the jump position $p(y) = \|L_y(\widehat{X},\widehat{P})|\psi(t)
 angle\|^2$
- Time distribution of the jumps: Poisson distribution with rate A

Dissipative jump operators

$$L_{y}(\widehat{X},\widehat{P}) = \int \frac{dQ}{\sqrt{2\pi\hbar}} e^{\frac{i}{\hbar}Q(\widehat{X}-y)} G(Q,\widehat{P})$$

$$\left(\frac{r_{c}}{\sqrt{\pi\hbar}} + \frac{1}{2\sqrt{\pi}Mv_{\eta}}\right)^{1/2} e^{-\frac{1}{2}\left(\left(\frac{r_{c}}{\hbar} + \frac{1}{2Mv_{\eta}}\right)Q + \frac{\widehat{P}}{Mv_{\eta}}\right)^{2}}$$
New
$$v_{\eta} = \frac{4k_{B}Tr_{C}}{\hbar}$$

Localization of the wave function (updated)

• Finite asymptotic value of position and momentum variance • Lower threshold for the localization $\Delta X_{thr} = 2k r_c^2 = (10^{-45} \frac{Kg}{m}) m^2$ Linked to the finite asymptotic value of the energy

Energy relaxation

Mean value of the kinetic energy

$$H_{t} \equiv \mathbb{E}[\langle \psi(t) | \frac{\hat{P}^{2}}{2M} | \psi(t) \rangle] = \operatorname{Tr}\left\{ \hat{\rho}(t) \frac{\hat{P}^{2}}{2M} \right\}$$

Temperature of the noise

$$\frac{\xi}{\lambda} = \frac{4k}{(1+k)^2} \ll 1$$

Collapse occurs on a time scale much shorter than dissipation

Equipartition of the energy

$$T = \frac{2H_{as}}{k_B} = \frac{\hbar v_{\eta}}{4k_B r_C} \approx 10^{-1} K$$

It does not depend on the mass of the system

Full characterization of the noise:

some underlying theory beyond standard quantum mechanics

Amplification mechanism

) Center of mass of an N-particle system $\ \hat{
ho}_{
m CM}(t)\,=\,{
m Tr}_{
m REL}\,\{\hat{arrho}(t)\}$

- Center of mass coordinates $\widehat{X}_j = \widehat{X}_{CM} + \sum_{j'=2}^{N} \Lambda_{jj'}^{-1} \widehat{r}_{j'}$
- Crucial **assumption**: rigid body $\hat{P}_j \approx M_j \hat{P}_T / M_T$

All the particles give the same contribution

Same master equation as the one-particle system with

$$\begin{array}{c} \lambda \longrightarrow N\lambda \\ M \longrightarrow M_{\mathrm{T}} \end{array}$$

Individual localization processes

$$L_y(\widehat{X}_1,\widehat{P}_1)\otimes \mathbb{1}_2$$

Incomplete description

Conclusions and outlooks

- We have extended the GRW model by means of position and momentum dependent jump operators, which induce energy relaxation to a finite asymptotic value
- Introduction of a **new parameter**, related to the temperature T of the noise, GRW recovered for T $\longrightarrow \infty$
- Toward the establishment of a realistic phenomenological model, with recovery of the energy conservation principle
- O Detailed comparison with the experimental bounds, to be developed for the CSL model

Acknowledgments

Angelo Bassi

University of Trieste

I.S. BELL

Nino Zanghì

Università di Genova

Fundamental Problems in Quantum Physics (Action MP 1006)

Markus Arndt

University of Vienna

UNIVERSITÀ DEGLI STUDI DI TRIESTE

Testing quantum superposition in a mass range so far unexplored

Threshold value and asymptotic energy

Master equation

$$\frac{\mathrm{d}}{\mathrm{d}t}\hat{\rho}(t) = -\frac{i}{\hbar} \left[\hat{H}, \,\hat{\rho}(t)\right] + \lambda \left(\frac{r_c(1+k)}{\sqrt{\pi\hbar}} \int \mathrm{d}Q \, e^{\frac{i}{\hbar}Q\hat{X}} e^{-\frac{r_c^2}{2\hbar^2}\left((1+k)Q+2k\hat{P}\right)^2} \hat{\rho}(t) e^{-\frac{r_c^2}{2\hbar^2}\left((1+k)Q+2k\hat{P}\right)^2} e^{-\frac{i}{\hbar}Q\hat{X}} - \hat{\rho}(t)\right)$$

Mean value of any operator valued function of the momentum operator only

$$\ll O \gg_t \equiv \mathbb{E}[\langle O \rangle_t] = \operatorname{Tr}\left\{\hat{\rho}(t)\widehat{O}\right\}$$

 $(\Delta_t X)^2 \longrightarrow 2r_c^2 k \qquad (\Delta_t P)^2 \longrightarrow \frac{\hbar^2}{8r_c^2 k}$

$$\frac{\mathrm{d}}{\mathrm{d}t} \ll f(P) \gg_t = \lambda \frac{r_c(1+k)}{\sqrt{\pi\hbar}} \int \mathrm{d}Q \ll e^{-r_c^2((1+k)Q+2kP)^2/\hbar^2} \left(f(P+Q) - f(P)\right) \gg_t$$

 $[\widehat{H},f(\widehat{P})]{=}0$ \longrightarrow No contribution from the hamiltonian term

Same predictions as for an "*auxiliary*" collapse model, with only jumps!!

Threshold value and asymptotic energy

Master equation

$$\frac{\mathrm{d}}{\mathrm{d}t}\hat{\rho}(t) = -\frac{i}{\hbar}\left[\hat{H},\,\hat{\rho}(t)\right] + \lambda \left(\frac{r_c(1+k)}{\sqrt{\pi\hbar}}\int\mathrm{d}Q\,e^{\frac{i}{\hbar}Q\hat{X}}e^{-\frac{r_c^2}{2\hbar^2}\left((1+k)Q+2k\hat{P}\right)^2}\hat{\rho}(t)e^{-\frac{r_c^2}{2\hbar^2}\left((1+k)Q+2k\hat{P}\right)^2}e^{-\frac{i}{\hbar}Q\hat{X}} - \hat{\rho}(t)\right)$$

Mean value of any operator valued function of the momentum operator only

$$\ll O \gg_t \equiv \mathbb{E}[\langle O \rangle_t] = \operatorname{Tr}\left\{\hat{\rho}(t)\widehat{O}\right\}$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \ll f(P) \gg_t = \lambda \frac{r_c(1+k)}{\sqrt{\pi\hbar}} \int \mathrm{d}Q \ll e^{-r_c^2((1+k)Q+2kP)^2/\hbar^2} \left(f(P+Q) - f(P)\right) \gg_t$$

 $[\widehat{H}, f(\widehat{P})] = 0$ \longrightarrow No contribution from the kinetic energy

Same predictions as for an "auxiliary" collapse model, with only jumps!!

$$(\Delta_t P)^2 \longrightarrow \frac{\hbar^2}{8r_C^2k}$$

$$H_t \longrightarrow \frac{\hbar^2}{16M r_C^2 k} = H_{as}$$