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  MOTIVATION:
THE GRW MODEL AND 

THE ENERGY DIVERGENCE



  
A. Bassi & G.C. Ghirardi, Phys. Rep. 2003
A. Bassi, K. Lochan, S. Satin, T.P. Singh & H. Ulbricht, Rev. Mod. Phys. 2013

Collapse models: challenging Collapse models: challenging 
the superposition principlethe superposition principle

Unified description of microscopic and macroscopic systems

No superposition of 
macroscopicmacroscopic systems

Testable predictions different from standard QM
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Localization of the wave functionLocalization of the wave function
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InstantaneousInstantaneous jump
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Wave function 
localization!!

G.C. Ghirardi, A. Rimini and T. Weber, Phys. Rev. A  1986
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Distribution of the jumpsDistribution of the jumps

Probability distribution of the localization position:

Dynamical derivationderivation of the Born rule

Localization rate for one nucleon λ=10−16 s−1

Microscopic systems are NOT affected by the localization mechanism!

Localization rate for an N-particle system λmacro=N λ

Amplification mechanismAmplification mechanism: macroscopic systems are strongly affected !

New 
parameter
             

Poisson time-distribution of the jumps



  

Energy divergenceEnergy divergence
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Different spatial distributions of the jumps 〈P 〉t ±∞

The average energy of the system diverges linearly in time, with a rate

t

≈10−25eV s−1



  

    

Re-establishment of the energy conservation principle

Possible modifications of the testable predictions of the model 

aS. Adler & A. Bassi,
Science, 325 (2009)

aS. Adler  JPA, 40 (2007)

2nd strongest bound on λ !!

Secular energy increase
compatible with 

experimental dataexperimental data

Why is it important to study this Why is it important to study this 
(very slow) energy increase ?(very slow) energy increase ?



  

  EXTENSION OF THE GRW MODEL:
INCLUSION OF DISSIPATION

A. Smirne, B. Vacchini & A. Bassi, in preparation (2014)



  

Master equationMaster equation

Statistical operator

Fourier Transform: Ly( X )= dQ

√2πℏ
e
i
ℏ
Q( X− y)

G (Q)

aG (Q) = √ rC
√πℏ

exp −
rC

2 Q2

2ℏ2

Pure position-decoherence dynamics        NO DISSIPATION

Describes also recoil-free
collisional decoherence

To include dissipation G (Q) G (Q , P)

M ∞

Lindblad equation:
Markovian dynamics

Q e
i
ℏ
Q X

G (Q ) ρ(t )G (Q)e
−
i
ℏ
Q X

−ρ(t)



  

Dissipative jump operatorsDissipative jump operators

Ly( X , P)= d Q

√2π ℏ
e
i
ℏ
Q( X− y)

G (Q , P)

vη =
4 k BT rC

ℏ
New 

parameter
             

a

a

Schrödinger evolution between the jumps

Jumps given by

aProbability distribution of the jump position

aTime distribution of the jumps: Poisson distribution with rate λ 



  

Dissipative jump operatorsDissipative jump operators

Ly( X , P)= d Q

√2π ℏ
e
i
ℏ
Q( X− y)

G (Q , P)

vη =
4 k BT rC

ℏ
New 

parameter
             

√γ

√γ '

δ x a δ x=(1− f γ)( y− x)

a γ '=g γ
−1

k=510−32 Kg
M



  

Localization of the wave function (updated)Localization of the wave function (updated)

The localization mechanism is left practically unchanged

Finite asymptotic value of position and momentum variance

Lower threshold for the localization

Δ X thr=2k r c
2=(10−45 Kg

m
) m2

Linked to the
finite asymptotic value

 of the energy



  

Energy relaxationEnergy relaxation

Mean value of the kinetic energy

H t ≡
P2

2M
P2

2M

H t

H as

ξ t

H t =(H 0−H as)e
−ξ t+H as

a Rate

a Asymptotic energy

≈10−20 s−1

≈10−4eV



  

Temperature of the noiseTemperature of the noise

Collapse occurs on a time scale much shorter than dissipation

Equipartition of the energy

T=
2H as

k B
=

ℏ vη

4 k B rC
≈10−1K

It does not depend on the mass of the system

Full characterization of the noise: 

some underlying theory beyond standard quantum mechanics



  

Amplification mechanismAmplification mechanism

Center of mass of an N-particle system

aCenter of mass coordinates 

a Crucial assumptionassumption: rigid body

All the particles give the same contribution

Same master equation as the one-particle system with

Individual localization processes

Incomplete description



  

Conclusions and outlooksConclusions and outlooks

We have extended the GRW model by means of position 

and momentum dependentmomentum dependent jump operators, which induce 

energy relaxationenergy relaxation to a finite asymptotic value

Toward the establishment of a realistic phenomenologicalrealistic phenomenological

model, with recovery of the energy conservation principle  

Detailed comparison with the experimental boundsexperimental bounds, to be 

developed for the CSL modelCSL model

Introduction of a new parameternew parameter, related to the 

temperature T of the noise, GRW recovered for T ∞
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Threshold value and asymptotic energyThreshold value and asymptotic energy

a Master equation

a Mean value of any operator valued function of the momentum operator only

[H , f (P)]=0 No contribution from the hamiltonian term

Same predictions as for an “auxiliary”“auxiliary” collapse model, with only jumps!!

(Δt X )2 (Δt P )2 ℏ2

8 rC
2 k



  

Threshold value and asymptotic energyThreshold value and asymptotic energy

a Master equation

a Mean value of any operator valued function of the momentum operator only

[H , f (P)]=0 No contribution from the kinetic energy

Same predictions as for an “auxiliary”“auxiliary” collapse model, with only jumps!!

(Δt P )2 ℏ 2

8 rC
2 k

H t
ℏ2

16M rC
2 k

=H as
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