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Novel Structures in 
Scattering Amplitudes



Outline   

• Amplitudes vs Feynman diagrams

• New structures in scattering amplitudes 

‣ MHV diagrams (and twistor space)

‣ on-shell recursion relations 

• More structure in planar N=4 SYM 

I. iterative relations in the higher-loop expansion of MHV          
amplitudes

II. new duality: amplitudes/Wilson loops    

III. new symmetry of the planar theory: dual superconformal 
symmetry           



• Scattering amplitudes in gauge theory and 
gravity are surprisingly simple quantities 
‣ geometry in Twistor Space (Witten)

‣ recursive structures in the perturbative S-matrix of  YM and GR

‣ much of the structure emerges by studying singularities of S-matrix 

‣ uncovering hidden structures leads to new techniques for calculating 

• Simplicity hidden by Feynman diagrams
‣ high-multiplicity processes

‣ loops

Motivations



Number of Feynman diagrams for  gg       n g scattering:

Result is: 

Large numbers of Feynman diagrams 
combine into mysteriously simple 
expressions 

(tree level)

☞

☞

systematic analysis of their phenomenological implications. In addition to the development of these
tools for the calculation of exact matrix elements, effort has therefore also been put into finding
proper approximations which reliably simulate the exact solutions in the relevant regions of the
multi-particle phase-space and which are sufficiently simple to be handled analytically and fast to
evaluate numerically.

n 2 3 4 5 6 7 8

# of diagrams 4 25 220 2485 34300 559405 10525900

Table 1: The number of Feynman diagrams contributing to the scattering process gg → n g .

In this Report we collect and review these recent developments for the calculation of multi-parton
matrix elements in non-abelian gauge theories. For examples of how these matrix elements can be
used to obtain cross sections for processes in high energy colliders see EHLQ [29] and references
contained within.

In Section 2 we describe the helicity-amplitude technique and introduce explicit parametrizations
of the polarization vectors in terms of massless spinors. To reach a wide an audience as possible we
have chosen not to use the Weyl - van der Waarden formalism preferred by some researchers, see
for example Ref.[10].

In Section 3 we introduce an alternative to the standard Feynman diagram expansion, based
on the equivalence between the massless sector of a string theory and a Yang-Mills theory. This
expansion groups together subsets of Feynman diagrams for a given process in a gauge invariant
way. These subsets are easier to evaluate than the complete set and different gauges can be used for
each subset so as to maximize the simplifications induced by a proper choice of gauge. Furthermore,
different subsets of diagrams are related to one another through symmetry properties or algebraic
relations and can be obtained without further effort from the knowledge of a small number of building
blocks. This expansion can be extended to arbitrary processes involving particles in representations
other than the adjoint, and in this Section we construct this generalization.

Section 4 describes the use of Supersymmetry Ward identities to relate amplitudes with parti-
cles of different statistics. These relations are useful even when dealing with non-supersymmetric
theories because in many cases the additional supersymmetric degrees of freedom decouple from
the processes of interest. In addition, if the energy of the scattering process is large with respect to
the mass splittings within supersymmetry multiplets, these relations can be used to easily calculate
the matrix elements for the production of supersymmetric particles.

In Section 5 we illustrate the use of these tools with the explicit calculation of matrix elements
for processes with four and five partons, and give results for the scattering of six gluons and four
gluons plus a quark-antiquark pair. We hope this Section is useful for the reader who wants to
familiarize himself with the details of how these calculations are performed.

In Section 6 we prove various factorization properties using a string-theoretic approach, which
provides a compact way to represent multi-parton amplitudes. The results contained in this Section
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→

A(1±,2+, . . .n+) = 0 at tree level

AMHV(1+ . . . i− . . . j− . . .n+) =
〈i j〉4

〈12〉〈23〉 · · ·〈n1〉
(Parke & Taylor)



What’s “wrong” with Feynman 
diagrams ?



• Diagrams are not separately gauge invariant
‣ vertices and propagators are off shell, leads to vast cancellations

• Huge redundancy from field redefinitions

• Solution:  on-shell methods  
‣ calculate on-shell amplitudes rather than off-shell Green’s functions

‣  ♻ amplitudes with fewer legs/fewer loops   ♻

• Unitarity-based & twistor-inspired methods: 
‣ gauge-invariant, on-shell data at each intermediate step of calculation

‣ also in non-supersymmetric theories 

Nothing!  but ...



• Amplitudes in N=4 SYM 

‣ All one-loop amplitudes expressed in terms of             
box functions (Bern, Dixon, Dunbar, Kosower)  

‣ Iterative structures in splitting amplitudes and in planar 
MHV amplitudes (Anastasiou, Bern, Dixon, Kosower; Bern, Dixon, Smirnov)  

- planar: leading in 1/N

‣ More structure: N=4 MHV amplitudes from a polygonal  
Wilson loop calculation

- strong coupling (Alday & Maldacena),  after fermionic T-duality (Berkovits & 
Maldacena;  Beisert, Ricci, Tseytlin, Wolf)

- weak coupling (Drummond, Korchemsky, Sokatchev + Henn;  Brandhuber, Heslop, GT )

‣ Dual superconformal symmetry (Drummond, Henn, Korchemsky, Sokatchev)              

Even more simplicity 



• Amplitudes in N=8 supergravity increasingly 
similar to those of N=4 SYM 

‣ Absence of triangle and bubble subgraphs in amplitudes  
(“no-triangle hypothesis”) (Bern, Dixon, Perelstein, Rozowsky; Bern, Bjerrum-
Bohr, Dunbar; Bjerrum-Bohr, Dunbar, Ita; Bjerrum-Bohr, Dunbar, Ita, Perkins, Risager; Bjerrum-Bohr, 
Vanhove)

‣ N=8 conjectured to be perturbatively finite (Bjerrum-Bohr, Dunbar, 
Ita, Perkins, Risager; Chalmers; Bern, Dixon, Roiban; Green, Russo, Vanhove; Bern, Carrasco, Dixon, 
Johansson, Kosower, Roiban)       

‣ Iterative structures in the IR divergences (beyond those of 

Weinberg 1965) (Naculich, Nastase, Schnitzer;  Brandhuber,  Heslop, Nasti, Spence, GT)

‣ Novel tree-level relations (Arkany-Hamed, Cachazo, Kaplan)



• Amplitudes in Gravity 

‣ KLT relations (Kawai, Lewellen, Tye)

‣ UV behaviour of tree amplitudes under (complex) 
shifts much softer than expected (Bedford, Brandhuber, Spence, GT; 
Cachazo, Svrcek; Benincasa, Boucher-Veronneau, Cachazo; Arkany-Hamed, Kaplan)



• MHV diagrams (Cachazo,  Svrcek, Witten)

‣ Loop MHV diagrams (Brandhuber, Spence, GT)

• Tree-level recursion relations (Britto, Cachazo, Feng + Witten)

‣ gravity (Bedford, Brandhuber, Spence, GT;  Cachazo, Svrcek)

‣ massive particles (Badger, Glover, Khoze, Svrcek)

‣ rational one-loop amplitudes in QCD (Bern, Dixon, Kosower) and          
pure gravity (Brandhuber, McNamara, Spence, GT) 

New methods



• Unitarity (Bern, Dixon, Kosower 1994)

‣ glue on-shell amplitudes to form loops 

‣ amplitudes reconstructed from its discontinuities across              
two-particle cuts

• Generalised unitarity (Britto, Cachazo, Feng 2005) 

‣ use multiple cuts            loops from trees !

‣ D-dimensional multiple cuts for complete amplitudes in non-
supersymmetric YM (Brandhuber, McNamara, Spence, GT)   

Specifically for loops: (not today, sorry)



• Spinor integration (Britto, Buchbinder, Cachazo, Feng; Britto, Feng, Mastrolia) 

‣ D-dimensional applications for non-supersymmetric amplitudes 
(Anastasiou, Britto, Feng, Kunszt, Mastrolia) 

• Maximal cuts (Bern, Carrasco, Johansson, Kosower 2008)

• Leading singularity  (Cachazo 2008)  



Spinor helicity formalism

• Massless particles:         null vector      

• Define                        where                        

• If                then    

• Hence    

- Inner products                      

pµ

p2 = 0

paȧ = pµσµ
aȧ σµ = (1,!σ)

paȧ = λaλ̃ȧ

〈12〉 := εabλa
1λb

2

[12] := εȧḃλ̃ȧ
1λ̃ḃ

2

positive (negative) helicity                                λ (λ̃)·
spinors

2(p1 · p2) = 〈12〉[12]

det p = 0



• Momenta and wavefunctions re-expressed in 
terms of       and 

• E.g.  for gluons,

‣      and       are reference spinors,  and   

‣ independent of    and      (up to gauge transformation)

λ λ̃

paȧ = λaλ̃ȧη η̃

ε(−)
aȧ =

λaη̃ȧ

[λ̃η̃]
ε(+)

aȧ =
λ̃ȧηa

〈λη〉

η η̃



A = A({λi, λ̃i, ;hi})

   Scattering Amplitudes 

‣ momenta and polarisation vectors expressed in terms   
of spinors and helicities

‣ Yang-Mills: use colour ordering 

‣ Tree-level YM: single-trace structure is stripped off

• First examples: 

A(1−,2+, . . .n+) = 0

A(1+,2+, . . .n+) = 0 ,
tree-level YM and GR



• gluon helicities are a permutation of −−++....+

• Holomorphic function of the positive 
helicity  spinors 

‣ geometry in twistor space (Witten, 2003)

• Covariant under dual superconformal 
symmetry [split-helicity case]  (Drummond, Henn, Korchemsky, Sokatchev, 2008)

 Maximally  Helicity Violating amplitude, 
    or MHV amplitude  

AMHV(1+ . . . i− . . . j− . . .n+) =
〈i j〉4

〈12〉〈23〉 · · ·〈n1〉
Parke-Taylor formula 

λ



• MHV amplitudes        localise on complex 
lines in Penrose’s Twistor Space (Witten, 2003)

• Line in twistor space        point in Minkowski 
space (Penrose)

• MHV amplitude        local interaction in 
spacetime ! (Cachazo, Svrcek, Witten, 2004)

‣ now understood as a change of variables in YM path 
integral which maintains locality in lightcone time    
(Mansfield; Gorsky & Rosly, 2005)

MHV diagrams  

➡

ˇ

➡

➡



  Diagrammatic Rules  

• MHV amplitude ➡ MHV  vertex

• Off-shell continuation for internal momenta

‣  Same as in lightcone Yang-Mills 

• Scalar propagators connect MHV vertices 

M M
· Internal momentum is off-shell

· Need to define spinor λ for an 
off-shell vector! 

+ _



Key points

• Off-shell prescription as in lightcone YM

‣                is the off-shell continuation

• Scalar propagators               

‣ At loop level, the     prescription is crucial in correctly 
determining the integration range

i
P2 + iε

iε

Laȧ = laȧ + zηaȧ

laȧ := lal̃ȧ



• Draw all diagrams obtained by sewing         
q − 1 + l  MHV vertices 

‣ each vertex provides one external negative helicity    

‣   + and − helicities treated asymmetrically    

• Examples:     (tree level)

‣ Next-to-MHV (NMHV):  q=3,   l=0       d=2

     l = # loops

 q = # negative helicity gluons, 



MHV Diagrams cont’d

•
• Covariance (= !-independence) is achieved after summing all 

MHV diagrams (CSW)

• Equivalence with results of Feynman diagram calculations

• On-Shell Recursion Relations (Britto-Cachazo-Feng-Witten)

• MHV diagrams = special recursion relation (Risager)  (shifts 
invisible since MHV amplitudes are holom.) 

1

L2

1

L′2

typical MHV diagram
contributing to
an NNMHV amplitude

An MHV diagram contributing to  a 
Next-to-Next-to-MHV amplitude

• Sum over all diagrams obtained by 
distributing external gluons among the 
vertices

• Covariance achieved in the sum

• Result identical to Feynman diagram 
calculation

q=4,   l=0       d=3



M

M M

M M M

MHV

NMHV

NNMHV

Amplitude MHV diagrams
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Twistor space structure

(Next-to-MHV)

(Next-to-Next-to-MHV)



• First application:  MHV amplitudes in N=4 

‣ sum over all possible ways to distribute the external        

−ve helicities among the vertices      
‣ sum over internal particle species  (g, f, s)

‣ measure turns out to be of the form:                            
phase space X dispersive

‣ applications to N=1,2 SYM and to pure Yang-Mills 

Loop MHV diagrams
   (Brandhuber, Spence, GT, 2004)

From Trees to Loops  (AB-Spence-Travaglini)

• Original prognosis from twistor string theory was negative 
(Berkovits-Witten), Conformal SUGRA modes spoil duality

• Try anyway:

• Connect MHV vertices, using the same off-shell 
continuation as for trees

• Chose measure, perform loop integration

• MHV 1-loop amplitudes in N=4/N=1 SYM (agrees with BDDK)

Z
dM !

m1,m2,h
∑

Z
dM



MHV Lagrangian

• Mansfield’s procedure:  (in a nutshell)

‣ Start from lightcone quantisation of YM,

‣ integrate out       (no derivatives wrt lightcone time     )

‣           correspond to physical polarisations

• Action is 

A+ x−

S = S−+ + S−−+ + S++− + S−−++

(Scherk, Schwarz)

anti MHV 

A− = 0

Az, Az̄



• Change variables in path integral:

• Further require:  

‣ Transformation is canonical, with

‣ Canonicality         Jacobian equal to 1 (classically)

‣ Subtleties related to             ?

Az ,Az̄ → B+ ,B−

(S−+ + S−++)[Az,Az̄] = S−+[B+,B−]

Az = Az[B+]

 · LHS is SDYM action

➡
det ∂+

 · Bäcklund transformation



• Plug                                                   in

• Result is    

• New vertices have MHV helicity configuration

• Nontrivial derivation of rational loop 
amplitudes in pure YM                                   
(Ettle, Fu, Fudger, Mansfield, Morris; Brandhuber, Spence, Zoubos, GT)

(S−−+ + S−−++)[Az,Az̄]

Az ∼ B+ + B2
+ + B3

+ + · · ·

S[B+,B−] = S−+ + S−−+ + S−−++ + S−−+++ + · · ·

Az̄ ∼ B− (1 + B+ + B2
+ + B3

+ + · · ·)

(Mansfield)



• Exploit analytic structure of tree amplitudes

‣ Input 1:  factorisation of tree-level amplitudes 

- Factorisation on multiparticle poles (simple poles, tree level) 

- Bilinear structure
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P2
i j→ 0

On-shell recursion relations
   (Britto, Cachazo, Feng; BCF + Witten, 2005)



‣ Input 2:  three-point amplitudes 

- Elementary building blocks. Nonvanishing in complexified Minkowski

- Can be calculated without using Feynman rules, in fact without even 
knowing the Lagrangian

‣ Input 3:  behaviour of amplitudes for large (complex deformations 

of) momenta 

!"#"$"%

!!

"

""

!

!
"



‣ Select two (adjacent) legs, and shift momenta:

‣ Impose                       for all z 

- Solution is complex:  

‣                                                is a one complex parameter 
family of amplitudes

‣ If                          , 

p̂1 = p1 + z η p̂2 = p2 − z η

p̂2
1 = p̂2

2 = 0

p̂1 + p̂2 = p1 + p2

A(z) := A(p̂1, p̂2, p3, . . . , pn)

1
2πi

∮

C∞

dz

z
A(z) = 0 = A(0) +

∑′
Res

A(z)
z

η = λ1λ̃2 , η = λ2λ̃1

A(z →∞)→ 0

This is the amplitude we want

Residues from multiparticle factorisation

UV behaviour  

Concretely:



• Final result:

 

‣ Amplitudes with fewer legs

‣ Shifted momenta (complex!)

‣ Proof has very general applicability, but need to        
check large-z behaviour (depends on the theory)
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A =
∑

j,h



‣ Recursion relation works also in Gravity                      
(Bedford, Brandhuber, Spence, GT; Cachazo, Svrcek)

- Relation to possible finiteness of N=8 supergravity   (Bern, Dixon, Roiban; 
Bern, Carrasco, Dixon, Johansson, Kosower, Roiban; Green, Russo, Vanhove; Bern, Carrasco, Forde, 

Ita, Johansson)  

- New relations for N=8 amplitudes, consequence of         behaviour 
(Arkani-Hamed, Cachazo, Kaplan)           

‣ Calculation of tree-level gravity amplitudes enormously  
simplified 

- Only need 

➡ EH Lagrangian (and its Feynman rules) not needed   

AGR(1+2+3−) = [AYM(1+2+3−)]2

AGR(1−2−3+) = [AYM(1−2−3+)]2

to jump-start the recursion relation  

KLT relations

1/z2



← 3-point vertex: 171 terms

← 4-point vertex: 2850 terms

☜

Bryce S. DeWitt , Phys. Rev. 162:1239-1256,1967.

Gravity (and YM) amplitudes 
are much simpler than what 

one would expect from 
Feynman rules !



• Similarly, for Yang-Mills theory, need to know  
only three-point amplitudes

‣ Four-point vertex not needed 



• Three-point amplitudes of massless particles can be 
calculated using Witten’s “auxiliary relation”    

• ...together with the fact that three-point amplitudes are 
holomorphic or anti-holomorphic (depend either on      or 
on     )           

‣ Encodes the scaling of wavefunctions with the spinors

‣ Valid for massless particles of any spin

(
λa

i
∂

∂λa
i
− λ̃ȧ

i
∂

∂λ̃ȧ
i

)
A = −2hi A

λ
λ̃



A(1s, 2s, 3−s) ∼
(

[12]3

[23] [31]

)s

Spin s three-point amplitudes

A(1−s, 2−s, 3s) ∼
(

〈12〉3

〈23〉〈31〉

)s



• Supersymmetric recursion relations in N=4 SYM/N=8 sugra

‣ Three-particle shifts  (MHV type) (Bianchi, Elvang, Freedman)

‣ Two particle shifts (BCF type)                                            
(Brandhuber, Heslop, GT;   Arkani-Hamed, Cachazo, Kaplan)   

• Advantages: 

‣ Amplitudes in N=4/N=8 efficiently generated (Bianchi, Elvang, Freedman) 

‣ Dual superconformal symmetry of N=4 manifest (Brandhuber, Heslop, GT)

‣ large-z behaviour in N=4/N=8 is manifest (Arkani-Hamed, Cachazo, Kaplan)

Recent developments



Novel structures
(planar N=4 SYM)



• n-point MHV amplitude in N=4 SYM 

A
tree

MHV
×

From Trees to Loops, cont’d

a :=
2(pq)

P2Q2− st

F2me(s, t,P2,Q2) =−c!
"2

[(−s
µ2

)−"
2F1 (1,−",1− ",as) +

(−t
µ2

)−"
2F1 (1,−",1− ",at)

−
(−P2

µ2

)−"
2F1

(
1,−",1− ",aP2

)
−

(−Q2

µ2

)−"
2F1

(
1,−",1− ",aQ2

)]

with

the all order in 
2-mass easy box function:

!

Sum of two-mass easy box functions, all with coefficient 1 

Simplest one-loop amplitude

A1−loop
MHV = A tree

MHV∑

Diagrammatic 
interpretation 

Q

· Colour-ordered partial amplitude, leading term in 1/N

·

(Bern, Dixon, Dunbar, Kosower, 1994) 



•                                         helicity-blind function 

•     BDS ansatz: (Bern, Dixon, Smirnov; earlier work of Anastasiou, Bern, Dixon, Kosower) 

is the all-orders in    one-loop amplitude, 

anomalous dimension of twist-two operators at large spin,
☝

a ∼ g2N/(8π2)

  ☞   Higher-loop amplitudes expressed in terms of lower-loop amplitudes 

γ(L)
K /4

1.  Iterative structures at higher loops
(Anastasiou, Bern, Dixon, Kosower; Bern, Dixon, Smirnov)

An,MHV = Atree
n,MHVMn

M(1)
n (ε)

f (L)(ε) =f (L)
0 + εf (L)

1 + ε2f (L)
2

ε‣  

‣  

Mn := 1 +
∞∑

L=1

aLM(L)
n = exp

[ ∞∑

L=1

aL
(
f (L)(ε)M(1)

n (Lε) + C(L) +O(ε)
)]

D = 4− 2ε

Mn

BDS

regulates infrared divergences 
☝



• BDS Ansatz suggested by universal resummation 
of IR divergences (Catani; Magnea, Sterman; Sterman, Tejeda-Yeomans)

• BDS: exponentiation of finite parts

‣ IR and finite parts entangled. Exponentiated finite 
remainders approach constants (independent of 
kinematics and # of particles) 

• Signature of two-loop iteration:  (take Log of the Ansatz)

‣ Requires knowledge of lower-loop amplitude to higher 
orders in   ,   hence go up by one loop only

M(2)
n − 1

2

(
M(1)

n (ε)
)2

= f (2)(ε)M(1)
n (2ε) + O(ε)

ε

Comments



‣ Two and three loops at four points (Anastasiou, Bern, Dixon, Kosower; 

Bern, Dixon, Smirnov).  Confirmed result for three-loop cusp 
anomalous dimension obtained assuming                    
maximal transcendentality (Kotikov, Lipatov, Onishcenko, Velizhanin)

‣ Two loops at five points (Bern, Czakon, Kosower, Roiban, Smirnov)

- Parity odd terms cancel in the iteration 

‣ Problems begin at two loops, six points (Bern, Dixon, Kosower, 
Roiban, Spradlin, Vergu, Volovich)   

‣ Exponent requires an additional finite remainder 
(discrepancy function)

Checks of BDS conjecture 



II.   Amplitude / Wilson Loop duality

• MHV amplitudes in planar N=4 super Yang-Mills 
appear in a completely different context:

                      < W[C] >

• Contour C is determined by the momenta of 
the scattered particles 

• Strong coupling (Alday & Maldacena)

• Weak coupling (Drummond, Korchemsky, Sokatchev+Henn; Brandhuber, Heslop, GT)

(Alday, Maldacena;  Drummond, Korchemsky, Sokatchev+Henn;  Brandhuber, Heslop, GT)



• The contour of the Wilson loop:

‣ at strong coupling, amplitude calculation identical to Wilson 
loop calculation with a particular  polygonal contour

‣ boundary of worldsheet tends to boundary of  T-dual AdS 
space as IR cutoff is removed

‣ colour ordering 

‣ momentum conservation               ➡ closed contour

‣ dual conformal symmetry acts on the T-dual momenta

n

∑
i=1

pi = 0

x’s are the T-dual (region) momenta

lightlike momenta

Tr(T 1T 2 · · · T 7)
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pi = xi − xi+1



• Try at weak coupling:    < W[C] > is the         
n-point MHV amplitude in N=4 SYM  

‣ modulo tree-level prefactor.  Wilson loop reproduces the helicity-blind     
function         

‣ Unexpected! eikonal approximation usually reproduces IR behaviour 
only;  we also get finite parts

• Conjecture:    (Log) < W[C] > = (Log) M 
(Drummond, Korchemsky, Sokatchev+Henn; Brandhuber, Heslop, GT)

‣ Natural exponentiation for Wilson loops: nonabelian exponentiation 
theorem (Gatheral; Frenkel & Taylor)

‣ Conjecture recently checked at two loops by Drummond, Henn, 
Korchemsky, Sokatchev for the four-, five-, and six-point case

Mn



  < W[C] >  at one loop,  n points 

• Calculation done (almost) instantly.                        
Two classes of diagrams:   [self-energy diagrams = 0 ]

The four-particle case was recently addressed in [8], where it was found that the
result of a one-loop Wilson loop calculation reproduces the four-point MHV amplitude
in N =4 SYM. Here we extend this result in two directions. First, we derive the four-
point MHV amplitude to all-orders in the dimensional regularisation parameter ε.
Secondly, we show that this striking agreement persists for an MHV amplitude with
an arbitrary number of external particles.

k7

k6

k5

k4

k3

k2

k1

p2

p1

p3

p4

p6

p7

p5

Figure 2: A one-loop correction to the Wilson loop, where the gluon stretches between
two lightlike momenta meeting at a cusp. Diagrams in this class provide the infrared-
divergent terms in the n-point scattering amplitudes, given in (2.6).

Three different classes of diagrams give one-loop corrections to the Wilson loop.4

In the first one, a gluon stretches between points belonging to the same segment.
It is immediately seen [8] that these diagrams give a vanishing contribution. In the
second class of diagrams, a gluon stretches between two adjacent segments meeting at
a cusp. Such diagrams are ultraviolet divergent and were calculated long ago [32–39],
specifically in [38,39] for the case of gluons attached to lightlike segments.

In order to compute these diagrams, we will use the gluon propagator in the dual
configuration space, which in D = 4− 2εUV dimensions is

∆µν(z) := −π2−D
2

4π2
Γ
(D

2
− 1

) ηµν

(−z2 + iε)
D
2 −1

(3.2)

= −πεUV

4π2
Γ(1− εUV)

ηµν

(−z2 + iε)1−εUV
.

4Notice that, for a Wilson loop bounded by gluons, we can only exchange gluons at one loop.
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p = p2

p1
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p4

p6
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q = p5

Figure 3: Diagrams in this class – where a gluon connects two non-adjacent segments
– are finite, and give a contribution equal to the finite part of a two mass easy box
function F 2me(p, q, P,Q), second line of (2.3). p and q are the massless legs of the
two-mass easy box, and correspond to the segments which are connected by the gluon.
The diagram depends on the other gluon momenta only through the combinations P
and Q.

The integral is finite in four dimensions. We begin by calculating it in four dimensions
setting ε = 0 (and will come back later to the calculation for ε != 0). In this case, the
result is

Fε=0(s, t, P,Q) = Li2(as) + Li2(at)− Li2(aP 2)− Li2(aQ2) (3.8)

+ log s log
(P 2 − s)(Q2 − s)

P 2Q2 − st
+ log t log

(P 2 − t)(Q2 − t)

P 2Q2 − st

− log P 2 log
−(P 2 − s)(P 2 − t)

P 2Q2 − st
− log Q2 log

−(Q2 − s)(Q2 − t)

P 2Q2 − st
,

where a is defined in (2.4). Using Euler’s identity

Li2(z) = −Li2(1− z)− log z log(1− z) +
π2

6
, (3.9)

and noticing that [10] (1− as)(1− at)/[(1− aP 2)(1− aQ2)] = 1, we can rewrite

Li2(as) + Li2(at)− Li2(aP 2)− Li2(aQ2) = (3.10)

− Li2(1− as)− Li2(1− at) + Li2(1− aP 2) + Li2(1− aQ2)

− log s log(1− as)− log t log(1− at) + log P 2 log(1− aP 2) + log Q2 log(1− aQ2) .

9

Gluon stretched between two 
segments meeting at a cusp 

Gluon stretched between 
two non-adjacent segments

A. Infrared divergent B. Infrared finite

(Brandhuber, Heslop, GT)



• Clean separation between infrared-divergent 
and infrared-finite terms

‣ Important advantage, as ε can be set to zero in the finite 
parts from the start 

• From diagrams in class A :

‣                            is the invariant formed with the 
momenta meeting at the cusp 
si,i+1 = (pi + pi+1)2

M (1)
n |IR = − 1

ε2

n

∑
i=1

(
−si,i+1

µ2

)−ε



• Diagram in class B, with gluon stretched 
between p and q gives a result proportional to

• Explicit evaluation shows that this is the     
finite part of a two-mass easy box function

‣ Two-dimensional representation of two-mass easy box function

Fε(s, t,P,Q) =
Z 1

0
dτpdτq

P2 +Q2− s− t
[−

(
P2 +(s−P2)τp +(t−P2)τq +(−s− t +P2 +Q2)τpτq

)
]1+ε



‣ In the example: 

‣ One-to-one correspondence between  Wilson loop diagrams 
and finite parts of two-mass easy box functions

‣ Explains why each box function appears with coefficient equal 
to one in the expression of the one-loop N=4 MHV amplitude
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– are finite, and give a contribution equal to the finite part of a two mass easy box
function F 2me(p, q, P,Q), second line of (2.3). p and q are the massless legs of the
two-mass easy box, and correspond to the segments which are connected by the gluon.
The diagram depends on the other gluon momenta only through the combinations P
and Q.

The integral is finite in four dimensions. We begin by calculating it in four dimensions
setting ε = 0 (and will come back later to the calculation for ε != 0). In this case, the
result is

Fε=0(s, t, P,Q) = Li2(as) + Li2(at)− Li2(aP 2)− Li2(aQ2) (3.8)
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,

where a is defined in (2.4). Using Euler’s identity

Li2(z) = −Li2(1− z)− log z log(1− z) +
π2

6
, (3.9)

and noticing that [10] (1− as)(1− at)/[(1− aP 2)(1− aQ2)] = 1, we can rewrite

Li2(as) + Li2(at)− Li2(aP 2)− Li2(aQ2) = (3.10)

− Li2(1− as)− Li2(1− at) + Li2(1− aP 2) + Li2(1− aQ2)

− log s log(1− as)− log t log(1− at) + log P 2 log(1− aP 2) + log Q2 log(1− aQ2) .
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A
tree

MHV
×

From Trees to Loops, cont’d

a :=
2(pq)

P2Q2− st

F2me(s, t,P2,Q2) =−c!
"2

[(−s
µ2

)−"
2F1 (1,−",1− ",as) +

(−t
µ2

)−"
2F1 (1,−",1− ",at)

−
(−P2

µ2

)−"
2F1

(
1,−",1− ",aP2

)
−

(−Q2

µ2

)−"
2F1

(
1,−",1− ",aQ2

)]

with

the all order in 
2-mass easy box function:

!

P = p3 + p4 , Q = p6 + p7 + p1

p = p2 q = p5

s := (p+P)2

t := (q+P)2

Q

⃡



• Explicit calculation gives: 

• At ε→0 :

‣ Box function in the same compact form derived from 
dispersion integrals using one-loop MHV diagrams    
(Brandhuber, Spence, GT) 

☜

Fε=0 =−Li2(1−as)−Li2(1−at)+Li2(1−aP2)+Li2(1−aQ2)

Fε = − 1
ε2

·
[( a

1−aP2

)ε
2F1

(
ε,ε,1+ ε, 1

1−aP2

)
+

( a
1−aQ2

)ε
2F1

(
ε,ε,1+ ε, 1

1−aQ2

)

−
( a

1−as

)ε
2F1

(
ε,ε,1+ ε, 1

1−as

)
−

( a
1−at

)ε
2F1

(
ε,ε,1+ ε, 1

1−at

)]

a :=
2(pq)

P2Q2− st



• At 4 points,  Wilson loop = all-orders in ε 
amplitude:

‣ Agrees with result of Green, Schwarz and Brink 

• For  n > 4 points: missing topologies         

‣ New diagrams appear at  O(ε) 

‣ Result correct only up to and including O(1) 

M (1)
4 (ε) =− 2

ε2

[(
−s
µ2

)−ε

2F1

(
1,−ε,1− ε,1+

s
t

)
+

(
−t
µ2

)−ε

2F1

(
1,−ε,1− ε,1+

t
s

)]



• E.g. for n =5, pentagons 

• Coefficient is parity odd, vanishes under 
collinear limits (and for ε→0)

• At one loop, Wilson loop gives parity-even 
part to all orders in ε

‣ Q: what part of amplitude does the Wilson loop calculate in 
general ? (higher loops, higher points, higher orders in ε)

Introduction
Scattering amplitudes

Wilson loops at one loop
Higher loop calculation

Two-loop calculation
Conjectures for the higher point case

Conclusion

Why does this not hold to all orders in ε?
Because there are new diagrams appearing at O(ε): pentagons.

Example (5-points, 1 loop all order amplitude [Bern Dixon Dunbar Kosower 1996])

M(1)
5 ∼

∑

p,q

F 2m e(p, q, P, Q) + ε ε1234F pentagon(pi)

F pentagon(pi) = ε1234 = 4i εµνρσpµ
1 pν

2 pρ
3pσ

4

(Pentagon is evaluated in 6− 2ε dimensions)

Paul Heslop Scattering amplitudes and Wilson loops

M (1)
5 ∼ ∑

p,q
F2me(p,q) + ε ε(1,2,3,4) F6−2ε

5

ε(1,2,3,4) = 4 iεµνρλ pµ
1 pν

2 pρ
3 pλ

4

F6−2ε
5 = (finite in 6 dimensions)



• On the Wilson loop side, dual conformal symmetry: 

‣ is the standard conformal symmetry acting on the dual 
variables x’s  

‣ is anomalous due to ultraviolet divergences                    
(UV for the Wilson loop = IR for the amplitude)

• BDS ansatz solves dual conformal Ward identities

‣ Unique solution up to five points (modulo constants)

‣ For n ≥ 6: nontrivial conformally invariant ratios, e.g. 

‣ Dual conformal symmetry leaves room for an arbitrary 
function of cross ratios    (discrepancy function)

III.  Dual (super)conformal symmetry

x2
13x

2
24

x2
14x

2
36

(Drummond, Henn, Korchemsky, Sokatchev)



• Dual superconformal symmetry (Drummond, Henn, Korchemsky, 
Sokatchev)

‣ nontrivial action on spinor variables

‣ requires formulation in dual N=4 superspace in order to 
become manifest

‣ Amplitudes lifted superamplitudes



• Conjecture: dual superconformal symmetry is a 
symmetry of the planar N=4 S-matrix           
(Drummond, Henn, Korchemsky, Sokatchev)

‣ planarity, maximal supersymmetry, on-shellness    

• Evidence: 

‣ MHV tree superamplitude (Drummond, Henn, Korchemsky, Sokatchev)   

‣ tree-level S-matrix, using a new super-recursion relation 
which is manifestly dual SC invariant (Brandhuber, Heslop, GT)

‣ MHV, Next-to-MHV amplitudes at one loop (DHKS)

‣ Coefficients of the expansion of the superamplitudes in a 
basis of box functions (BHT)

Trees

Loops



• Idea:  write down an N=4  supersymmetric 
recursion relation 

‣ building blocks are superamplitudes 

‣ three-point superamplitudes are covariant  

- MHV is manifestly covariant

- anti-MHV amplitude (Brandhuber, Heslop, GT; Arkani-Hamed, Cachazo, Kaplan)

‣ propagator + delta function + fermionic integration  

‣ proof of DSC obtained by induction 

‣ similar proof for the expansion coefficients of one-loop 
amplitudes in a basis of box functions                                 

DSC invariance of tree-level S-matrix
(Brandhuber, Heslop, GT)

A =
∑

P

∫
d4ηP̂ AL(zP )

i

P 2
AR(zP )



• Novel structures uncovered in gauge theory and 
gravity, new methods to calculate amplitudes

‣ twistor space geometry

‣ MHV diagrams                                                 

‣ On-shell recursion relations 

• Planar N=4 

‣ Iterative structures 

‣ Amplitude/Wilson loop duality 

‣ Dual superconformal symmetry  

Summary



‣ Can we understand why MHV amplitudes and         
Wilson loops are related ? 

‣ Can we extend this to non-MHV amplitudes ?

‣ Higher-loop analytic calculations of Wilson loops? 

‣ Use integrability of worldsheet theory to find differential 
equations which determine the discrepancy function  

‣ Strong coupling: beyond 4 points, beyond MHV 

‣ Origin of dual superconformal symmetry in field theory?

‣ Extensions of dual superconformal symmetry ?

‣ N=8 supergravity 

Open questions

and many more...







•                                                         (Nair) 

‣                       fermionic variables,  A is an SU(4) index

‣ expansion in η generates all component amplitudes          

‣ p powers of     corresponds to  helicity                    
(Georgiou, Khoze)    

‣ MHV:       

‣ gluons                 get factor of 

Superamplitudes

A = δ(4)
( ∑

i

λiλ̃i

)
δ(8)

( ∑

i

ηiλi

)
A

ηA , A = 1, . . . 4

ηi hi = 1− p/2

A =
1

〈1 2〉〈2 3〉 · · · 〈n 1〉
i−, j− : (ηi)4(ηj)4 〈i j〉4


