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Hadronization of QCD is the reformulation of its action in terms
of hadronic fields and fermionic fields with the quark quantum
numbers. These fermionic fields cannot be the bare quark fields
(Pauli principle, double counting).

The problem of hadronization is a special case of a general
problem which appears in many fields of Physics:

Given a Lagrangian which admits bound states, how to
construct an equivalent Lagrangian in which bound states and
constituent fields appear on the same footing.

This problem has been considered by many authors (Weinberg,
Salam,...). The result of their investigations is a conjecture of a

compositeness condition: the wave function renormalization
constants of the bound states fields in the Lehmann spectral
representation must vanish.

I will present a constructive procedure in which a compositeness
condition is exactly implemented.



Examples of fermionic composites

There are many finite and infinite fermion systems whose
partition function at low energy is dominated by bosonic modes.
This is always the case when, due to spontaneous breaking of a
global symmetry, there are Goldstone bosons.

• Many-body systems : phonons, Cooper pairs in metals and
atomic nuclei, Cooper and molecular pairs in ultracold fermi
systems in magnetic traps

• QCD : mesons and baryons, and Cooper pairs (diquarks) in
the color superconducting and color locking phases

The structure of composites and condensates changes with
temperature, fermion number and other control parameters

The constituents can live in equilibrium with the composites.



Mixing of composite and elementary bosons

Composites can mix with elementary bosons with the same
quantum numbers

• polari(zation pho)tons :
particle-hole states and photons in condensed matter

• vector dominance in QCD :
quark-antiquark vector resonances and photons

• tensor dominance in quantum gravity :
particle-hole states and gravitons
(matter stress tensor and metric tensor) in quantum gravity



Outline of the present approach

I perform an independent Bogoliubov transformation at each
time in the partition function. The time-dependent parameters of
the transformation are then associated to dynamical composite
fields while the transformed fermionic fields (quasiparticles)
represent fermionic states in the presence of the composites.

Quasiparticles exactly satisfy by construction a compositeness
condition which is exactly implemented.

The resulting action of composites and quasiparticles is exactly
equivalent to the original one, and as such can be used in
numerical simulations.

Analytic approximations are also possible, based on an
expansion in the inverse of the index of nilpotency of the
composites, which is the number of fermionic states in their
structure functions.



Operator form of partition function in relativistic field theories

Z =

∫
[dσ] exp [−S(σ)] TrF


L0−1∏
t=0

T̂t


σ the elementary bosonic fields coupled to the fermions

TrF trace on the fermion Fock space, T̂t transfer matrix

T̂t = T̂†t T̂t+1

T̂t = exp
[
−û†M(σt) û − v̂†M(σt)T v̂

]
exp [ v̂ N(σt) û]

û, v̂ = fermion-antifermion canonical annihilation operators

The matrices M, N depend on time only through the bosonic
fields. Their form depends on the regularization adopted, but what
follows is not affected by their explicit expression. One can adopt a
lattice regularization to be able to use some nonperturbative
numerical results.



Operator form of partition function in QCD
In the case of gauge theories the matrices Mt , Nt are functions of
the spatial gauge fields at Euclidean time t. The temporal gauge
fields appear in the partition function in the following form

Z =

∫
[dU] exp [−SG(U)] TrF


L0−1∏
t=0

(
T̂†t V̂t exp(µ n̂B)T̂t+1

)
Uµ,t = link variables

SG = gluon action

µ = chemical potential

n̂B = baryon number

V̂t = exp
(
û† ln U0,t û + v̂†U∗0,t v̂

)



The matrices M, N with Kogut-Susskind fermions
in the flavor basis

Kogut-Susskind fermions in the flavor basis have Dirac and taste
indices on which the matrices γµ, tµ act

M = 0

N = −2 γ0 ⊗ 11

m + σ +
3∑

j=1

γ j ⊗ 11
[
P(−)

j
∇

(+)
j
+ P(+)

j
∇

(−)
j

] 
= Dirac Hamiltonian

P(±)
µ =

1
2

(11 ⊗ 11 ± γµγ5 ⊗ t5 tµ)

∇
(+)
j
=

1
2

(
U j T(+)

j
− 1
)
, ∇(−)

j
=

1
2

(
1 − T(−)

j
U†

j

)
= covariant derivatives

T(±)
µ = forward / backward translation operators of one block



Global Bogoliubov transformations

α̂i =
[
R

1
2
(
û − F † v̂†

)]
i

β̂i =

(v̂ + û† F †
) ◦

R
1
2


i

R = (1 + F †F )−1 ◦

R= (1 + FF †)−1

Bogoliubov transformations are unitary for arbitrary matrices F

Quasiparticle operators α̂, β̂ have quark-antiquark quantum
numbers

but in general do not have definite transformation properties with
respect to the symmetries of the Lagrangian, which therefore are
not respected term by term.

We can give the quasiparticle operators the correct
transformation properties and restore term by term all symmetries
by requiring that the matrices F transform in the appropriate way,
which implies that they must be dynamical fields.



Time-dependent Bogoliubov transformations

Dynamical fields can be introduced by performing an
independent Bogoliubov transformation at each time.

Since nothing depends on the Ft , I can integrate over them in
the partition function with an arbitray measure dµ(F †,F ).

The trace over the transformed states in the partition function
can be performed exactly yielding its functional form

Z =

∫
[dU] exp [−SG(U)]

∫
dµ(F †,F ) exp

[
Se f f

]



Physical interpretation

The effective action Se f f is a function of the quasiparticle
(Grassmann) variables and of the matrices Ft .

For a physical interpretation I expand these matrices on a time
independent basis ΦK with time-dependent coefficients φK,t

Ft =
∑

K

φK,tΦ
†

K

Se f f = Se f f (φ∗, φ, α∗, α, β∗, β,Φ†,Φ) depends on the
holomorphic variables φ∗, φ, the Grassmann variables α∗, α, β∗, β
and the matrices Φ†,Φ.

I associate the fields φK with bosonic composites with quantum
numbers K, and the Grassmann variables α∗, α, β∗, β with
fermionic quasiparticles



Index of nilpotency

index of nilpotency = ΩK = largest integer such that
(
Φ̂K
)ΩK
, 0

Φ̂K = v̂ΦK û composite annihilation operators

do not satisfy canonical commutation relations (no problem)

ΦK= structure functions of the composites

ΩK = number of fermionic states in structure function ΦK, much
greater than the number of intrinsic degrees of freedom

ΩK counts the number of composites we can put in the state K

Necessary condition for physical interpretation

ΩK >> 1



Compositeness condition

The trace in the partition function is evaluated over coherent
states.

The Bogoliubov transformations transform coherent states of
quarks-antiquarks according to

S exp (û†α + v̂†β) |0〉 = 〈φ|φ〉−
1
2 exp(α̂†α + β̂†β)|φ〉

|φ〉 = exp
(
û†F û†

)
|0〉

α̂i|φ〉 = β̂i|φ〉 = 0 .

Quasiparticle operators satisfy by construction the compositeness
condition

〈φ| α̂ β̂ Φ̂†
K
|φ〉 = 0 , quasiparticle states orthogonal to composites



Meson effective action

Neglecting quasiparticles we get the meson action

Zmesons =
∫

[dU] exp [SG(U)]
∫  dφt dφ∗t

2πi

 exp [−Smesons(φ∗, φ)]
Smesons =

∑
t

tr−
[
− ln Rt + lnRt + M†t

]

Rt =

[
1 +
(
Nt + e−Mt U†

0,t−1
Ft−1 U0,t−1 e−Mt

)†
×
(
Nt + e−Mt Ft e−Mt

)]−1
e−M†t .



Finite baryon density
In order to discuss the case of finite baryon density I should
introduce baryonic composites constructed in terms of
quasiquarks (not bare quarks). I will later show one way to
introduce baryons, but as a first step it is sufficient to consider a
space of mesons, quasiquarks and quasiantiquarks, which
contains the space of mesons and baryons

Smesons-quarks = Smesons −
∑

t
α∗t (∇t − Ht ) αt+1

− βt+1

(
◦

∇t −
◦

H t

)
β∗t + βtI

(2,1)
t αt + α

∗

tI
(1,2)
t β∗t

where
∇t = eµU0,t − T(−)

0
,

◦

∇t = e−µU†
0,t
− T(+)

0

H = eµ
[
U0,t − R

− 1
2

t E−1
t+1

R
− 1

2
t+1

]
,

◦

H = e−µ
U†0,t − ◦R−

1
2

t
◦

E
−1

t+1
◦

R
− 1

2

t+1





The coefficients I, E,
◦

E



The Ω−1 expansion

The Ω−1 expansion is a saddle point expansion in which the
asymptotic parameter is the index of nilpotency. Saddle point
equations are obtained by performing the variation of the mesonic
Lagrangian with respect to the structure function of the condensed
meson.

It is remarkable that these equations coincide with the equations

I
(1,2) = I (2,1) = 0

which eliminate the direct mixing of quasiparticles and
quasiantiparticles in the effective action.

The Bogoliubov transformation at the saddle point is therefore
equivalent to the Foldy-Wouthuysen transformation which
separates particles from antiparticles in the Dirac Hamiltonian.

We are presently studying the saddle point equations for QCD in
the normal and color superconducting phases



Application to a four-fermion model
Model with N f degenerate fermions with quartic interaction in

3+1 dimensions

S =
∑

x

∑
y
ψ̄(x) [m 11 ⊗ 11 + Q]x,y ψ(y) +

1
2

g2

4N f

∑
x

(ψ̄(x)ψ(x))2

m = the mass parameter, g2 = coupling constant and

Q =
∑
µ

γµ ⊗ 11
[
P(−)
µ ∇

(+)
µ + P(+)

µ ∇
(−)
µ

]
The model has a discrete chiral symmetry at m = 0:

ψ → −γ5 ⊗ 11ψ , ψ̄ → ψ̄ γ5 ⊗ 11

I linearize the action introducing an auxiliary field σ(x)

S
′ =
∑

x

∑
y
ψ̄(x) (m + σ + Q)xyψ(y) +

4N f

2g2

∑
x
σ2(x) .



Saddle-point approximation at zero fermion density

Smesons =
∑

t
tr−
{

ln(1 + F †F ) − ln
[
1 + (N + F )† (N + F )

]}
∂

∂σ
Smesons = 0 → standard gap equation

∂

∂F
Smesons = 0 → F̄

F̄ =

( N
2H

)( √
1 + H2 − H

)
, Hp = p2 + σ

2

B̄ = σ2

( √
1 + ε2 − ε

)
, εp =

1
2m4

(p2
− p2

F) 4 = gap energy

N
2H

, σ2 = Pauli matrix = unitary factors

The fluctuations around the minimum give the action of a scalar
field with mass = 2σ̄



Saddle point approximation at finite fermion density

Integrating over the quasifermions and summing on Euclidean time
at constant fields

S̄effective = −
1
2

L0 tr−
{
µ θ
(
eµ − R̄−1R̄

)
+ ln( R̄ R̄−1) θ

(
R̄
−1 R̄ − eµ

)}
,

θ = the step function defining the Fermi surface which depends on
the chemical potential.

Variation with respect to F̄ gives

F̄ =
N

2H
(
√

1 + H2 − H), H̄ > eµ − 1

The components of the boson composite for which the above
condition is satisfied (which only enter in the effective action)
remain unaltered



The condition on fermion number gives

−
2
L0

∂

∂µ
S̄effective = tr− θ

[
exp µ − 1 − H̄

]
= nF .

For µ < σ̄, nF = 0. For µ > σ̄, quasifermions occupy the states
from zero energy up to a maximum energy EnF depending on the
fermion number nF.
At the minimum

S̄effective = −L0 tr−

{
ln
( √

1 + H2 + H
)2
θ
(
H̄ + 1 − exp µ

)}
.

Stationarity with respect to σ̄ yields the gap equation

4L0N f

g2
σ̄ = 2 L0 σ̄ tr−

 1

H
√

1 + H2
θ
(
H̄ + 1 − exp µ

) .
Increasing the fermion density, quasifermions occupy higher and
higher energy states depleting the condensate, until only the
solution σ̄ = 0 remains and chiral invariance is restored.



A variational application application to QCD
at finite baryon density

In the case of QCD the solution of the variational equations for the
structure functions is more difficult because the structure functions
of the chiral mesons must depend on the gauge fields, unless they
are point-like.
As a first application of the present method I exploit its variational
feature assuming a point-like structure for the chiral σ-meson

Φσ = γ0 ⊗ 11 ⊗ 11c ⊗ 11s

11c, 11s = identity in color and spatial coordinates

I assume that at the saddle point the σ-field, but not the gauge
field, is constant



S̄effective = −Tr−
[
ln(1 + φ̄2

σ) − ln
(
1 − eµ

′

U0T(+)
0
+ NN† + φ̄2

σ

)]
µ′ = µ + ln(1 + φ̄2

σ) .

First term = contribution of σ-meson condensate

Second term = contribution of quarks of mass φ̄σ (due to the
condensate) interacting with gauge fields

One must determine the minimum of S̄effective with respect to φ̄σ
under the condition on baryon number

−
2
L0

∂

∂µ′
S̄effective =

1

1 + φ̄2
σ

nF .

One expects that numerical simulations be more stable due to the
effective mass φ̄σ of the quarks even with zero bare mass

Analitical investigation under way



Diquarks and Baryons
Diquarks and baryons are constructed satisfying the
compositeness condition
Diquark coherent states

|d〉 = exp

∑
K

dK D̂†
K

 |0〉 , D̂K =
1
2
α̂ DK α̂

DK = diquark structure function with quantum number K
dK = holomorphic variables associated to diquark fields

Baryon coherent states

|b〉 = exp

∑
K,H,i

d∗K (BH)K, i bH α̂
†

i

 |0〉
(BH)K, i = baryonic structure function with quantum number H
bH = Grassmann variables associated to baryon fields
α̂i = creation operator of quasiquark

Effective actions derived but not reported here



Summary and outlook
• Many-body theory : The method reproduces exact known

results and goes beyond the Random Phase approximation

• Relativistic field theory : The method reproduces the results of
a four fermion interaction model and in addition yields the explicit
form of the composite boson structure function and its dependence
on the chemical potential.

• QCD : Effective actions have been derived for QCD in different
phases. They can be used in numerical simulations which should
be more stable because of the presence of the condensate even
for bare quark masses exactly zero. At the moment the structure
functions can be parametrized in the spirit of a variational
calculation, but

• Study of the Ω−1 expansion is in progress. If we get in this way
analytical results for the structure functions, like in the four-fermion
interaction model, we can used them as inputs in numerical
simulations.


