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N =4 supersymmetric Yang–Mills theory

Field content

• 6 real scalars, ϕAB [ϕ̄AB = (ϕAB)∗ = 1
2εABCDϕ

CD]

• 4 Weyl fermions, λA
α , λ̄α̇

A A,B = 1, . . . , 4

• 1 vector, Aµ

All the fields are in the adjoint of the gauge group G.

N =4 → Maximal supersymmetry in four dimensions.

SU(4)∼SO(6) R-symmetry group.

Action

S =

Z
d

4
x Tr

»
1

2
F

µν
Fµν + D

µ
ϕ̄ABDµϕ

AB − 2i λ
A /Dλ̄A

−2
√

2 g
“
[λ

A
, λ

B
]ϕ̄AB + [λ̄A, λ̄B]ϕ

AB
”
−

1

2
g

2
[ϕ

AB
, ϕ

CD
][ϕ̄AB, ϕ̄CD]

–

The theory has a number of remarkable properties:

• UV finite and quantum conformally invariant

→ PSU(2,2|4) group of global symmetries

• Invariant under SL(2,Z) S-duality

• Related to type IIB superstring theory by the AdS/CFT

correspondence [G=SU(N)]

• Integrability (of the spectrum)
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N =4 SYM in the light-cone gauge

Light-cone coordinates:

xµ →

{
x± = 1√

2

(
x0 ± x3

)
x = 1√

2

(
x1 + ix2

)
, x̄ = 1√

2

(
x1 − ix2

)
Similarly for the gauge field: Aµ → A± , A , Ā

Light-cone gauge:

A− = 0 [→ no ghosts]

A+ is eliminated using the equations of motion.

Fermions:

λA
α → (χA

(+)
, χA

(−)
) [1-component Grassmann variables]

χA
(±)

= P±λA
α , P± = 1

2γ
±γ∓

χA
(+)

is eliminated using the e.o.m. [χ
(−)
≡ χ]

Physical components:

A , Ā , ϕAB , χA , χ̄A [8 bosons + 8 fermions]

Supersymmetry transformations

δA = iεAχ̄A

δϕAB = −i(εAχB − εBχA + εABCDε̄Cχ̄D)

δχA =
√

2εA∂−Ā−
√

2ε̄B∂−ϕAB
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Light-cone component action

S =

Z
d

4
x Tr


2Ā2A +

1

2
ϕ̄AB2ϕ

AB −
2i
√

2
χ̄A

2

∂−
χ

A

+g

»
4i

∂̄

∂−
A[∂−Ā, A] + i

∂̄

∂−
A[∂−ϕ̄AB, ϕ

AB
]− i A[∂̄ϕ̄AB, ϕ

AB
]

−2
√

2
∂̄

∂−
A[χ̄A, χ

A
] + 2

√
2 A[χ

A
,

∂̄

∂−
χ̄A]− 2

√
2

∂̄

∂−
χ̄A[χ̄B, ϕ

AB
]

+h.c.

–
+g

2

»
4

1

∂−
[∂−A, Ā]

1

∂−
[∂−Ā, A] + [ϕ

AB
, A][ϕ̄AB, Ā]

+
1

∂−
[∂−Ā, A]

1

∂−
[∂−ϕ̄AB, ϕ

AB
] +

1

∂−
[∂−A, Ā]

1

∂−
[∂−ϕ̄AB, ϕ

AB
]

+
1

8
[ϕ

AB
, ϕ

CD
][ϕ̄AB, ϕ̄CD] +

1

4

1

∂−
[∂−ϕ̄AB, ϕ

AB
]
1

∂−
[∂−ϕ̄CD, ϕ

CD
]

−i2
√

2
1

∂−
[χ̄A, Ā][A, χ

A
] + i2

√
2

1

∂−
[χ

A
, A][ϕ̄AB, χ

B
]

+i2
√

2
1

∂−
[χ̄A, Ā][ϕ

AB
, χ̄B] + i2

√
2

1

∂−
[χ̄A, ϕ

AB
][ϕ̄BC, χ

C
]

+i2
√

2
1

∂−
[∂−A, Ā]

1

∂−
[χ̄A, χ

A
] + i2

√
2

1

∂−
[∂−Ā, A]

1

∂−
[χ̄A, χ

A
]

+i
√

2
1

∂−
[∂−ϕ̄AB, ϕ

AB
]
1

∂−
[χ̄C, χ

C
]− 2

1

∂−
[χ̄A, χ

A
]
1

∂−
[χ̄B, χ

B
]

–ff
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Light-cone superspace

Coordinates: z = (x+, x−, x, x̄; θA, θ̄A), A = 1, . . . .4

→ Chiral coordinate: y− = x− − 1√
2
θAθ̄A

Supercharges [q ≡ q
(+)

]

qA = − ∂

∂θ̄A
− i√

2
θA∂− , q̄A =

∂

∂θA
+

i√
2
θ̄A∂−

The other eight supercharges, qA
(−)

and q̄A(−)
, are non-

linearly realised.

Super algebra

{qA
(+)
, q̄B(+)

} =
√

2δA
B p−

{qA
(−)
, q̄B(−)

} =
√

2δA
B p+ ≡

√
2δA

BH

{qA
(−)
, q̄B(+)

} =
√

2δA
B p

Chiral derivatives

dA = − ∂

∂θ̄A
+

i√
2
θA∂− , d̄A =

∂

∂θA
− i√

2
θ̄A∂−

{dA, d̄B} = i
√

2δA
B ∂−
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N =4 light-cone superfield

N =4 on-shell multiplet → (A , Ā , χA , χ̄A , ϕ
AB)

All the physical component fields can be packaged into a

single scalar superfield:

Φ = Φ(x+, x−, x, x̄, θA, θ̄A)

The irreducible N =4 superfield is defined by the two

constraints

dAΦ = 0 , d̄AΦ̄ = 0 (chirality)

d̄Ad̄BΦ =
1
2
εABCDd

CdDΦ̄ (reality, a.k.a. “inside-out”)

The superfield solving the constraints is

Φ(x, θ, θ̄) = − 1
∂−
A(y)− i

∂−
θAχ̄A(y) +

i√
2
θAθBϕ̄AB(y)

+
√

2
6
θAθBθCεABCDχ

D(y)− 1
12
θAθBθCθDεABCD∂−Ā(y)

[where y = (x, x̄, x+, y− = x− − i√
2
θAθ̄A)]

From the reality constraint

Φ̄ =
1
48

d̄4

∂2
−

Φ

[where d̄4 = εABCDd̄Ad̄Bd̄Cd̄D]
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N =4 light-cone superspace action

S = 72

Z
d

4
x

Z
d

4
θ d

4
θ̄ Tr

(
−2 Φ̄

2

∂2
−

Φ

+i
8

3
g

„
1

∂−
Φ̄ [Φ, ∂̄Φ] +

1

∂−
Φ [Φ̄, ∂Φ̄]

«
+ 2 g

2

„
1

∂−
[Φ, ∂−Φ]

1

∂−
[Φ̄, ∂−Φ̄] +

1

2
[Φ, Φ̄] [Φ, Φ̄]

«ff

It can be rewritten in terms of Φ only using the constraint

Φ̄ =
1
48

d̄4

∂2
−

Φ

In this formulation both the N =4 supersymmetry and the

SU(4) R-symmetry are manifest, but the Lorentz invariance

is not explicit.

The light-cone superspace formulation can be used to prove

scale invariance of N =4 SYM to all orders in perturbation

theory: all the Green functions can be shown explicitly to

be finite in the light-cone superspace formulation.
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Deformations of N =4 SYM

N =4 SYM is maximally supersymmetric. It is interesting

to look for theories with similar properties, but less

supersymmetry.

Marginal deformations

S =
∫

d4xLN =4 +O(x)

where O(x) is an exactly marginal operator.

A special class of deformations are those characterised by

the superpotential (in N =1 superspace)

W =
∫

d4xd2θ gTr
{
h εIJK ΦI[ΦJ ,ΦK]∗ + kI

(
ΦI

)3
}

+h.c.

where the ∗-commutator is defined as

[ΦI,ΦJ ]∗ = ΦI ∗ ΦJ − ΦJ ∗ ΦI

ΦI ∗ ΦJ = eiπβIJΦIΦJ with βJI = −βIJ

In the special case kI = k, |βIJ | = β, ∀I, J = 1, 2, 3 it

has been argued that the deformed theory can be rendered

finite imposing a single relation among the parameters

γ(g, h, β, k,N) = 0

→ 2-parameter family of exactly marginal deformations of

N =4 SYM
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Deformations and AdS/CFT

The exactly marginal deformations of N =4 SYM are

interesting in the context of the AdS/CFT correspondence.

They are expected to be dual to string theory on

backgrounds of the form AdS5 × X5, with X5 a five-

dimensional Einstein manifold.

β-deformation

In the special case of the superpotential

W =
∫

d4xd2θ gTr
(
eiπβΦ1Φ2Φ3 − e−iπβΦ1Φ3Φ2

)
+ h.c.

the dual supergravity background was constructed by Lunin

and Maldacena.

• The metric is of the form AdS5 × S̃5, where S̃5 is a

deformed sphere with isometry U(1)×U(1)

• All the bosonic fields (i.e. the complex dilaton (τ), the

R⊗R four-form (C(4)) and the NS⊗NS and R⊗R two-

forms (B(2), C(2)) have a non-trivial dependence on the

coordinates of the deformed sphere.
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Non-supersymmetric β-deformation

The previous β-deformation can be generalised to a

non-supersymmetric theory involving three deformation

parameters, γi , i = 1, 2, 3. This more general deformation

can also be obtained introducing ∗-star products

S =

Z
d

4
x Tr

„
1

2
F

µν
Fµν + D

µ
ϕ̄ABDµϕ

AB − 2i λ
A /Dλ̄A

−2
√

2g
“
[λ

A
, λ

B
]∗ϕ̄AB + [λ̄A, λ̄B]∗ϕ

AB
”
−

g2

2
[ϕ

AB
, ϕ

CD
]∗[ϕ̄AB, ϕ̄CD]∗

«
where for generic fields f and g:

[f, g]∗ = f ∗ g − g ∗ f , f ∗ g = eiπγiε
ijk q

f
j q

g
kfg

qf
i , qg

i , i = 1, 2, 3 denote the charges of the fields f and

g with respect to a choice of the U(1)×U(1)×U(1) Cartan

subalgebra of the N =4 R-symmetry.

The charges of the various fields in the N =4 multiplet can

be chosen as follows

q1 q2 q3

ϕ14 1 0 0

ϕ24 0 1 0

ϕ34 0 0 1

ϕ23 −1 0 0

ϕ13 0 −1 0

ϕ12 0 0 −1

q1 q2 q3

λ1 1
2 −1

2 −1
2

λ2 −1
2

1
2 −1

2

λ3 −1
2 −1

2
1
2

λ4 1
2

1
2

1
2

Aµ 0 0 0
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Deformations in light-cone superspace

The deformed theories have the same field content as

N =4 SYM. They can be realised in the same N =4 light-

cone superspace, even if they possess less supersymmetry,

introducing a new superspace star-product.

Given N =4 superfields, F = F (z) and G = G(z),

F = f
(0)

+ f
(1)

A θA + f
(2)

AB θ
AθB + · · · , G = · · ·

we define

F ? G = F e
iπ(
←−
Q

(1)

−→
Q

(2)
−
←−
Q

(2)

−→
Q

(1)
)
G

where

Q
(1)

=
∑4

A=1α
(1)

A qA , Q
(2)

=
4∑

A=1

α
(2)

A qA

−→qA = θA

−−→
∂

∂θA
− θ̄A

−−→
∂

∂θ̄A
,

←−qA =
←−−
∂

∂θA
θA −

←−−
∂

∂θ̄A
θ̄A

In order to write the deformed theories in light-cone

superspace we think the U(1) charges as being associated

with the fermionic coordinates in the superfield expansion

instead of the component fields.

The deformed theory in then simply obtained replacing

ordinary products by ?-products in the N =4 light-cone

superspace action.

To match the component action

α
(a)

A = α
(a)

A (γ) , a = 1, 2 , A = 1, . . . , 4
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β-deformed light-cone superspace action

S =

Z
d

4
x

Z
d

4
θ d

4
θ̄ Tr

(
−Φ

d̄42

∂4
−

Φ

+i g

 
d̄4

∂3
−
Φ [Φ, ∂̄Φ]? +

1

48

1

∂−
Φ [

d̄4

∂2
−
Φ, ∂

d̄4

∂2
−
Φ]?

!

+
g2

16

 
1

∂−
[Φ, ∂−Φ]?

1

∂−
[
d̄4

∂2
−
Φ, ∂−

d̄4

∂2
−
Φ]? +

1

2
[Φ,

d̄4

∂2
−
Φ]? [Φ,

d̄4

∂2
−
Φ]?

!)

With a suitable choice of the parameters α
(a)

A (γ),

after computing the θ integrals this action reproduces

exactly the component form of the three-parameter non-

supersymmetric deformation.

The special case of the N =1 β-deformed SYM is recovered

with α
(1)

4 = α
(2)

4 = 0.

Thanks to the properties of the ?-product defined above

many of the calculations done for N =4 SYM can be

repeated with minimal modifications for the deformed

theories.
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All-order ultra-violet finiteness

The proof of scale invariance for the deformed theories is

based on Weinberg’s power counting theorem. It follows

the same steps as in the N =4 case. It is possible to prove

that every Green function in the theory is ultra-violet finite

in the planar approximation.

Outline

1. Preliminary estimate of superficial deg. of divergence, δ:

δ = 0 for any superdiagram if all momenta contribute to

the loop integrals.

2. Analysis of supergraphs distinguishing internal and

external lines:

manipulations of superspace expressions allow to reduce

δ to a negative value for any diagram.

3. The same analysis is repeated for all subgraphs in an

arbitrary supergraph.

4. The Dyson/Weinberg power counting theorem implies

that all Green functions are ultra-violet finite.

For an arbitrarily complicated

diagram one starts from an

external leg and analyses

loops sequentially moving

inwards.
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Generalisations

W=
∫

d4xd2θ gTr
{
h εIJK ΦI[ΦJ ,ΦK]∗ + kI

(
ΦI

)3
}

+h.c.

In general these theories are expected to be finite only if

certain relations among the parameters are satisfied.

If γi = β, i = 1, 2, 3 and kI = k, I = 1, 2, 3 only one

relation is required → γ(g, h, β, k, n) = 0

• Complex deformation parameters, γi

The manipulations used to prove the finiteness of the

deformed theories remain valid if the parameters γi are

complex. The light-cone superspace formulation, which

does not require regularisation, may allow to extend the

results to this case.

The case of complex γi’s is interesting in connection with

integrability. It may allow to shed light on the interplay of

integrability, supersymmetry and conformal invariance.

• h 6= 1

Deformations with h 6= 1 can be realised in light-cone

superspace

S = c

∫
d4xd4θ d4θ̄ [L? + αLN =4]

with h = h(α), c = c(α).
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• kI 6= 0

For this class of deformations a formulation in light-cone

superspace may also be possible.

In this case the dual supergravity geometry is not known.

• Beyond the planar approximation

The light-cone superspace formalism allows to study

systematically the effect of the 1/N corrections which break

the scale invariance of the β-deformed theory.

The only step in the proof of finiteness which fails at finite

N is the preliminary estimate of the superficial degree of

divergence.

The general strategy for light-cone superspace calculations

is to first project the external states onto given components,

then perform the θ integrations and finally the momentum

integrals. All but the last fermionic integration can be

performed using δ-functions, leading to expressions which

are local in θ.

The divergences in non-planar diagrams are due to

momentum factors arising from the θ integrals

δ8(θ1−θ2)
ˆ
A ? d4d̄4δ8(θ1 − θ2) ? B

˜
= ABδ8(θ1−θ2)+O(k−)

The structure of the superspace fermionic integrals should

allow to systematically determine the condition β = β(g,N)

that renders the theory finite beyond the planar limit.
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A world volume theory for multiple M2-branes?

Constructing a three-dimensional theory describing the

world volume dynamics of a stack of coincident M2-branes

has been a long-standing problem.

A simple free theory for a single M2-brane is know, but

no generalisation with the properties required by multiple

M2-branes has been found.

One expects a superconformal field theory with N =8

supersymmetry in d = 3, resulting in a OSp(8|4) symmetry

group. The theory should contain 8 scalars associated with

the transverse directions and 8 fermions. A natural way

to introduce a local U(N) symmetry is to couple a Chern–

Simons gauge field.

However, a no-go theorem seems to rule out this possibility.

Recent progress:

• Basu and Harvey: a generalised Nahm equation for

multiple M2-branes ending on a M5-brane

• Bagger and Lambert: a new N =8 Chern–Simons theory

– the no-go theorem is circumvented by considering fields

valued in a Lie three-algebra.
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Bagger–Lambert model

L = −
1

2
DµX

aI
D

µ
X

I
a +

i

2
Ψ̄

a
Γ

µ
DµΨa +

i

4
fabcdΨ̄

b
Γ

IJ
X

cI
X

dJd
Ψ

a

−
1

12

“
fabcdX

aI
X

bJ
X

cK
”“

fefg
d
X

eI
X

fJ
X

gK
”

+
1

2
ε

µνλ

„
fabcdA

ab
µ ∂νA

cd
λ +

2

3
faef

g
fbcdg A

ab
µ A

cd
ν A

ef
λ

«

XI → 8 scalar fields

Ψ → 1 d=11 Majorana spinor, satisfying the constraint

Γ012Ψ = −Ψ

Both fields are valued in a Lie three-algebra:

XI = XI
a T

a, Ψ = Ψa T
a,

with

[T a, T b, T c] = ifabc
d T

d

hab = Tr
(
T aT b

)
The gauge field has two algebraic indices, Aab

µ . Covariant

derivative

D a
µ b = δb

a ∂µ −A b
µ a , with A b

µ a = f cdb
aAµ cd

The N =8 supersymmetry algebra closes on-shell up to a

gauge transformation.
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M2-branes in light-cone superspace

The light-cone gauge formulation retains only the physical

propagating degrees of freedom → The Chern–Simons

gauge field can be eliminated leading to a theory of 8

scalars and 8 fermions.

The B–L theory must be expressed in terms of three-

dimensional spinors by a suitable choice of eleven-

dimensional Γ-matrices:

Γµ = ρ9 ⊗ γµ , µ = 0, 1, 2

ΓI = ρI−2 ⊗ 12 , I = 3, . . . , 10

P± projectors are constructed from the three-dimensional

γµ’s. The field content is simply 8 real 1 component spinors

and 8 scalars.

The gamma-matrices can be chosen so as to give four

complex three-dimensional spinors. The SO(8) R-symmetry

is broken to SO(6)∼SU(4).

One can then decompose the scalars as

XI → X, X̄,Xi , i = 1, . . . , 6

The component fields can then be packaged in the same

light-cone superfield used for N =4 SYM:

Φ ∼ X + θAψ̄A + tiABθ
AθB Xi + εABCD θ

AθBθC ψD + θ4X̄
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