

# Micro-Nano Characterization and Fabrication Facility @ CMM

#### Maurizio Boscardin boscardi@fbk.eu



### Fondazione Bruno Kessler Centre for Materials and Microsystems

# **FBK capability**

- Simulation & Desing
  - Silvaco , L-Edit, ...
- Fabrication Process at 6-inch
  - 500m<sup>2</sup> of class 10-100 detectors technology
  - 200m<sup>2</sup> of class 100-1000 MEMS technology
- Micro-Nano Analytical Lab
  - SIMS, SNMS, ..
- Electrical Testing
  - Manual and automatic
- Integration Lab
- Custom CMOS design
  - external services

#### http://mtlab.fbk.eu/







# FBK technology capabilities

#### Two separate clean room

- 500m<sup>2</sup> of class 10-100 micro Technologies
- 200m<sup>2</sup> of class 100-1000 equipped for MEMS technology

#### The lab now is upgraded to 6 inch wafers





LITHOGRAPHIC EQUIPMENT Mask aligner Dry film

ETCHING Tegal systems for dry etching Wet etching (including TMAH etching of silicon and lift-off)

OWEN for diffusion and annealing

METALLIZATION Evaporator and Elettrodeposition (Gold)

WAFER BONDING



D 201

M. Boscardin



LITHOGRAPHIC EQUIPMENT Mask aligner (front to back-side alignement) *Stepper* 

ETCHING Deep RIE (AMS 2000) 3 Tegal systems for dry etching Wet etching (including TMAH etching of silicon)

**DOPING** Ion Implanter & gas (POCl<sub>3</sub> and BBr<sub>3</sub>)

2 FURNACES for oxidation and diffusion

LPCVD TEOS, Poly-silicon and Si<sub>3</sub>N<sub>4</sub> PECVD Deposition SiO<sub>2</sub>, Si<sub>3</sub>N<sub>4</sub>, Amorphous Silicon

METALLIZATION Sputtering (AI, AI1%Si, Ti, TiN)

M. Boscardin





#### **Main Equipment**

- ✓ manual parametric testing
- ✓ automatic parametric/functional testing
- ✓ optical testing



## **Microsystems Integration Area**



#### **Main Equipment**

- ✓ Micro-assembly station
- ✓ bonding
- ✓ micromilling/drilling
- ✓ screen printing (thick film deposition)



# **Micro-Nano Analytical Laboratory**

#### http://minalab.fbk.eu

Develop and apply innovative **surface science analytical methodologies** to fully characterize both inorganic and organic materials at **micro and nano scale** 



M. Boscardin



# SILICON TECHNOLOGY

# **Strip Detectors: past examples**

### AMS experiment (@ISS)



### ALICE experiment (@LHC)



Silicon microstrip detectors: 700 large-area double-sided in spec detectors fabricated in 2002-2004.

#### Silicon microstrip detectors:

600 <u>large-area</u> <u>double-sided</u> in spec detectors fabricated in 2003-2005.

### Pixel detectors: examples

# Medipix 1&2

### **NA48/ALICE experiment**

DEL: 30x25

ALICE SPD layout

pixel size 50x400um<sup>2</sup>

• 00

C-IRST SPD-ALICE C

PDEL: 30x256

ITC-IRST SPD-ALICE CERN

PDEL 30x

PDGL: 30x

PIDEL: 30s



- Medipix1: pixel size 170x170um<sup>2</sup>
- Medipix2: pixel size 55x55um<sup>2</sup>

Substrate thick.: up to 1.5mm

at 4 inch !!!

Substrate thickness: 200um

#### Leakage current ~100pA/cm2 for 300um substrates

# **Standard**" detector technology

- Double/Single side detectors
- Substrates: Floating Zone but also Epi, Quarz, SOI, ... from  $200\mu m$  to 1.5mm thick @4 inch
- Microstrip
- Coupling: DC or AC  $(SiO_2 + Si_3N_4)$
- Bias: Polysilicon resistor or punch-through
- n-side isolation: p-stop or p-spray

### Pixel

- p-on-n , n-on-n or n-on-p tech.
- n-side isolation: p-stop or p-spray

# **Silicon Drift Detectors**

### **3 running public project:**

- 6 inch wafer - INFN/INAF development of very large linear SDD for astrophysics experiment
- ESA PoliMi (2010-2012) development of gamma ray spectrometer based on SDD coupled to LaBR scintillator
- EU INSERT PoliMi (2012-2015) development of a SPCT system integrated with MR



# **Low-level light sensors**

Avalanche Geiger-mode photodiodes



#### SiPM

array of tiny SPADs connected in parallel to give proportional information

• Gain ~10<sup>6</sup>

time

- Timing ~ 100ps /1ph.e.
- Bias voltage <100V
- Sensitivity ~1 ph. e.
- QE ~ medium







M. Boscardin

IFD 2014



# **Silicon photomultiplier**



#### **SiPM**

array of tiny SPADs connected in parallel to give proportional information

http://srs.fbk.eu/

Giovedi , 13 marzo alle 10:00 Sensors for calorimetry photo-detectors and silicon sensors Alberto Gola (FBK) Industrial Poster Exibition



# **FBK Si-3D for IBL ATLAS**

- Double side technology
- Columns are passing and empty
- No support wafers
- Surface isolation with p\_spray on both side
- 200micron slim edge

**FE-I3** 

**FE-I3** 

FBK-IRS1

**FE-I4** 

STRIP



20KU

X6,000

F1 L01

1 Mm

WD19



۲

# Si-3D and edgless

- FBK Si-3D tecnology is double side so incompatible with support wafers but the active area can be terminated by a multiple columns fence = slim edge
- We have use this approach on real pixel detectors «ATLAS like»

The lateral dead layer is about 100micron





M. Povoli et al, JINST doi:10.1088/1748-0221/7/01/C01015





# Si 3D detectors @ FBK

#### **Full 3D detectors**

Final version used for the production of detectors for ATLAS IBL holes etched all through the wafer





#### New version 3D detectors

Full 3D with ohmic columns passing through & junction columns depth, less than wafer thickness



#### To obtained thin 3D detectors on Si-Si or SOI wafers

# **K** New hybrid 3D detectors for neutrons





M. Boscardin

IFD 2014



# FBK edgless technology

Support wafers SOI wafers, epi, ... Si-Si

DRIE etched trench and doping

- Trench definition and etching (DRIE)
- Doping using gas source technology
- Trench filling with polysilicon



#### Trench filled with polisilicon







#### M. Boscardin



- If required for the bias contact, the device can finally be metallized on backside.
- Wafer thinning at VTT and IZM



# **Edgeles pixel**

- Epi 100micron
- Layout based on ALICE
- p-on-n pixel
- INFN Bari e Trieste



- SOI 200um Fz
- layout based on ATLAS
- n-on-p pixel
- LPNHE Paris, Università di Trieste e Ginevra





# Silicon buried channels for detector cooling

#### Channels made with individual holes:

The section is determined by the DRIE process, the length by the layout





Channels realized as a sum of individual holes: The section is determined by the process and by layout, the length by the geometry Experimental results made in the lab TFD INFN of Pisa show a general compliance of the temperature of the sample to the specific fixed at least up to a power of about 2.5 W/cm<sup>2</sup>.









### Anisotropic TMAH Etching tetramethylammonium hydroxide





### MICRORESONATORS (high-Q MOMS resonators for quantum optics)

- Opto-mechanical micro-resonators developed to detect radiationpressure coupling between light and a macroscopic body
- Double side SOI wafer micromachining with wafer-through features
- In partnership with INFN (Trento, Firenze), LENS, University of Firenze e Trento, CNR





IFD 2014



# Grazie per l'attenzione

# Si 3D Detectors Technology

- Ultra radiation-hard silicon particle detectors for future high-energy physics experiments
- Based on columnar electrodes (Pass through columns)







# Silicon buried channels for detector cooling

✓The experimental results made in the lab TFD INFN of Pisa show a general compliance of the temperature of the sample to the specific fixed at least up to a power of about 2.5 W/cm<sup>2</sup>.

In partnership with INFN Pisa

M. Boscardin, et al., NIMA (2012), http://dx.doi.org/10.1016/j.nima.2012.10.014





Temperature along the silicon module at different pressure



M. Boscardin



# **Silicon Drift Detectors**

#### gamma spectrometer for ESA



T=: -20°C peaking time: 6 μs

<sup>57</sup>Co, <sup>137</sup>Cs, <sup>60</sup>Co spectra measured with the SDD array coupled to a 1" LaBr<sub>3</sub> crystal



Energy resolution @662keV measured with a PMT = 3.2% (courtesy F.Quarati)

presented at IEEE NSS-MIC 2012

IFD 2014



# **FBK Si-3D for IBL ATLAS**

- The temporary metal shorts 336 pixels together in a strip
- The IV characteristics of 80 strips form a FE-I4 pixel sensor
- Allows to perform electrical tests on the FE-I4 pixel sensors
- before bump-bonding
- Good correlation between wafers and Module



