The CMS Upgrade program

Giacomo Sguazzoni (INFN Firenze) on behalf of the CMS Collaboration

IFD2014 - INFN Workshop on Future Detectors for HL-LHC 11.03.2014

Table of contents

- LHC program and timeline
- Motivations and directions
 - Radiation effects and subdetector lifetime
 - Physics object performances (Particle Flow)
 - Pile Up mitigation
 - Rates and trigger requirements
- Overview of the CMS upgrade program
- Tracker Detectors
- Calorimeters
- Muon system
- Trigger system
- Conclusions

Much more details specific talks during the Workshop

The LHC timeline

Motivations and directions

- Radiation effects and subdetector lifetime
- Physics object performances (Particle Flow)
- Pile Up mitigation
- Rates and trigger requirements

Radiation effects

Physics object performances (Particle Flow)

CMS aims to maintain high precision experiment performances throughout the entire LHC to HL-LHC physics program.

- Physics performance are driven by **object** performance, i.e. by optimal combination of sub-detectors.
- The ultimate combination of sub-detectors measurements into high level objects (μ , e, γ , charged & neutral hadrons...) is devoted to the **Particle Flow algorithm**
 - A PF-grade detector must have large coverage, excellent low-material tracker and granular, high resolution, low noise calorimeters
 detectors need to be upgraded with object performance (PF) approach;
 if feasible and affordable known issues or

 - limitations should be cured (e.g. CMS is currently lacking PF capabilities beyond $|\eta|$ ~2.5)

11.03.2014 GSguazzoni

Pile Up mitigation

Identification of uninteresting tracks (PU mitigation) is crucial for Particle Flow (cleaning) and correct object-to-vertex assignment
tagging of PU vertices (vertex detectors with large forward extended coverage)
object-to-vertex granularity and segmentation and extreme timing capability to associate energy deposits to a given vertex from Time-Of-Flight measurement (desired resolution is 20-30 ps)

Rates and trigger requirements

- L1 and HLT trigger capabilities will be extended to cope with the larger rates; however this is not sufficient given combinatorics induced by the PU
 - for example, in the muon case no P_T threshold is effective in reducing the ate
- Maintaining the levels of reduction rates with much worse PU condition requires more information to be used at in the trigger levels
 - Larger latency to allow for the L1 system to digest more information
 - Improved L1 systems
 - Tracker information at L1

Timeline of CMS upgrade program

Tracking detectors

Tracker evolution to Phase 2 (now)

Outer strip tracker: 10 barrel layers, 9 endcap disks with **double sided** (stereo) and single sided (rφ) modules. η=1.0 R **Double Sided** [cm] Single Sided 110 54 20 50 120 280 z [cm]

Pixel: 3 barrel layers, and 2+2 disks.

Tracker evolution to Phase 2 (now)

The $|\eta|$ >0.9 is critical because tracks intercept several times power cables, fibers and cooling pipes. Downstream effects on ECAL are visible.

11.03.2014 GSguazzoni

Phase 1 - 2016 TS - New Pixel Detector

The Phase1 pixel detector is an improved version of the current pixel detector.

- 4 layers / 3+3 disks (100×150 µm², n+-in-n): improved track resolution and efficiency
- New readout chip: reduced dynamic inefficiency at high rate and PU

- Can survive up to LS3 by exchanging Layer 1
- Will be installed during the 2016 Technical Stop; a pilot disk 3 blade will be installed for 2015 for testing

Tracker evolution to Phase 2

Outer tracker: 6 barrel layers, 5+5 endcap disks with PS (pixel+strip) and 2S (strip+strip) modules.

Pixel: 4 barrel layers, up to 10+10 disks for coverage up to $|\eta| \sim 4$ in connection with extended muon system and endcap calorimeters.

11.03.2014 GSguazzoni

Tracker phase 2 service routing

Large η region could be critical (need to route all pixel services in a region that is now active)

Tracker Material

Many lessons have been learned building the current tracker. We can be confident in the reduction of the material budget in the Phase2 tracker.

P_T Modules for track trigger

2S module 5cm long strips (both sides) 90µm pitch, P~2.7W, ~92cm² of active area

PS module 2.4cm long strips+pixels 100µm pitch, P~5W, ~45cm² of active area

Filtering of hits originating from low P_T tracks: local spatial correlation of the hits on the two spaced sensors is used

L1 track finding

- 8 r $\phi \times$ 6 Rz trigger sectors
- Two track findings under investigation
 - Associative Memory (pattern recognition) + FPGA (track fitting)
 - FPGA boards (pattern recognition + track fitting)

Calorimeters

HCAL Evolution (now)

The current detector has no to limited longitudinal segmentation

- During LS1 and 2015
 - Backend electronics upgrade to µTCA
 - New readout chip (QIE10) with TDC
 - Timing: improved rejection of beam related background (especially HF)

29

41

HCAL Evolution (phase 1, LS2)

Phase1 upgrade to improve longitudinal segmentation

- HPDs in HB and HE replaced with SiPMs
 smaller, radiation tolerant, stable in
 - magnetic field3x Photon Detection
 - Efficiency, lower noise
 - depth segmentation for improved measurement of hadronic clusters, backgrounds rejection and reweighing of radiation damage.

4

Endcap evolution (now)

Current calorimeter endcap system: PbWO crystals (ECAL, EE) + brass/ scintillator layers (HCAL, HE)

Endcap evolution (phase 2) - option 1

Traditional two compartment: shashlik ECAL + rebuilt HCAL (with possible extra layers). Coverage up to $|\eta| \sim 4$. Room for the GEM muon stations.

Endcap evolution (phase 2) - option 2

Combined Forward Calorimeter, CFC. Dual readout calorimeter. Coverage up to $|\eta| \sim 4$

Endcap evolution (phase 2) - option 3

High Granularity Calorimeter (full imaging CALICE/PFCal concept). Backed up by *standard* rebuild HCAL. Coverage up to $|\eta| \sim 4$.

ECAL shashlik options

28×W (2.5mm) + 29×LYSO(Ce) (1.5mm)

[Cerium-doped Lutetium Yttrium Orthosilicate] Readout:

WLS Capillaries (4 per module) Calibration Fiber (1 per module) 17 alternating layers of W (3mm) and CeF₃ (10mm).
[Cerium Fluoride]
Waveshifter is Cerium Doped
Quartz fiber.

GaInP Photosensors (1,2 per module) - No depth segmentation

11.03.2014 GSguazzoni

HCAL Endcap rebuild

HE-rebuild option could either re-use present/existing endcap absorber, or be installed into new/similar absorber structure:

- full HCAL beyond Shashlik EE; only the back half of HCAL for HGC option
- New active material and readout (multiple, parallel WLS fiber) to mitigate radiation damage
- Increase segmentation transverse and longitudinal dimensions, to improve pile-up rejection capabilities
- Other alternatives are being evaluated

New tile

CFC and HGC concepts

6

CFC

Dual fiber readout: scintillation and Cherenkov (based on DREAM concept); different doped/crystal fibers allow for e/h corrections for ultimate resolution

HGC/PFCAL

Beam 25 GeV T

ECAL upstream

6" wafer from ILC R&D

Based on CALICE concept; high longitudinal and lateral segmentation silicon detectors coupled to absorber allows for full reconstruction of the shower (sub)structure

identified tracks

Improving PU mitigation

Several options are evaluated to improve PU mitigation capabilities of calorimeters, especially in endcaps where the granularity is limited.

Muon system

Muon system evolution

Muon system layout being for 2015 data taking.

Drift Tubes (barrel)

Cathode Strip Chambers

Resistive Plate Chambers

Muon system evolution: during LS1 (now)

Consolidation of muon system in LS1 being finalized in the following weeks

Muon system evolution towards HL-LHC

Gas Electron Multiplier chambers and Glass RPC under study for performance and redundancy in high rate and high PU region

- Coverage |η|~1.6-2.4 under study
 - → GEMs stations (P_T resolution)
 - Glass-RPC (timing to cut background)
 - Desirable to install GE1/1 in LS2 for early experience and fake muon rejection in trigger
- Coverage |η|<2.4
 GEM tagging station coupled with extended pixel tracking
- ► Need room from HE

Trigger system

L1 trigger evolution (current)

Muon systems and calo informations combined at the very last stage (Global Muon Trigger and Global Trigger).

L1 trigger evolution (Phase 1 - 2016)

Hardware replaced; more uniform architecture; muon systems combination is anticipated and calorimetric objects are improved for better PU mitigation and isolation.

Trigger for Phase2

- L1: same architecture as Phase1 trigger with increased granularity (crystal level @EB) and ability to operate at 1MHz
- HLT and DAQ: upgraded to handle 1MHz into HLT and 10kHz output

Scenario	Input	Reduction rate	L1 output	Reduction rate	HLT output
2012	20MHz·20PU~400MHz	1/4000	0.1MHz	1/100	1kHz
HL-LHC	40MHz• 140PU ~5.6GHz	1/5600	1MHz	1/100	10kHz

- Reduction rates at 100-200PU are obtained by using more information at L1:
 - ▶ latency up to 10µs (this requires hardware upgrades)
 - track information available to all track trigger objects
- According to Moore law (computing, network, storage) this approach is technologically in the reach by LS3

Conclusions

- LHC physics program is extremely challenging
- It demands to the experiments requirements largely exceeding the design parameters
- CMS will cope with these requirements by a staged, extensive upgrade program
- Guidelines have been identified in terms of radiation tolerance, trigger performances, pile-up mitigation, physics performances
- Early upgrade steps are already in place and well advanced
- Proposals for the subdetectors that need to be replaced during LS3 for HL-LHC are actively under study
- Full performance assessment and final decisions to be taken within Summer within the preparation of the Technical Proposal.

Much more details in the specific talks during the Workshop