The Upgrade of the ALICE detector

IFD2014 INFN Workshop on Future Detectors for HL-LHC Trento, March 11-13, 2014

- **×** ALICE upgrade physics motivation
- Upgrade strategy and schedule focus on central barrel
 - + Core upgrade: ITS, High Rate Capabilities (TPC, Electronics, O², ...) Muon Forward Tracker

× ITS upgrade

- + Design goals
- Physics Performance of the upgraded apparatus examples
- + Technology issues
- + Construction & installation

ALICE UPGRADE PHYSICS MOTIVATION

Main physics topics that are unique of the upgraded ALICE (in operation after LHC Long Shutdown 2):

- 1. Heavy-flavour transport parameters in the QGP
 - + Heavy-quark diffusion coefficient (→ QGP equation of state, viscosity of the QGP fluid)
 - + Heavy-quark thermalization and hadronization in the QGP
 - + Mass dependence of parton energy loss in QGP medium

2. Low-mass dielectrons: thermal photons and vector mesons from the QGP

- + Photons from the QGP ($\gamma \rightarrow e^+e^-$) \rightarrow map temperature during system evolution
- + Modification of ρ spectral function ($\rho \rightarrow e^+e^-$) \rightarrow chiral symmetry restoration
- 3. Charmonia (J/ ψ and ψ ') down to zero p_T
 - + Only the comparison of the two states can shed light on the suppression/ regeneration mechanism
 - + Study QGP-density dependence with measurements at central and forward rapidity

ALICE CENTRAL BARREL AND ITS UPGRADE S. Beolè - IFD 2014 GUIDELINES

ALICE

- Focus on observables for which ALICE is unique: *low- p*_T *heavy flavour, charmonia, and di-leptons* (all have very high background conditions)
- **x** Requirements:
 - + Low field and low material (precise measurements at low \underline{p}_{T})
 - + High tracking precision (heavy flavour vertices)
 - + Particle identification (electrons and hadrons, ALICE's special)
 - + High-rate capability (<u>no trigger possible due to low S/B →</u> <u>store all events</u>)

→ Upgraded read-out for TPC, TOF, TRD, MUON, ZDC, Upgraded DAQ/HLT/ Offline with High-rate capability

- + Target LHC Pb-Pb luminosity after LS2 (~6x10²⁷ cm⁻²s⁻¹= 10 x current)
- + Upgraded ALICE records Pb data at 50 kHz (currently <0.5 kHz)
- + Integrate L_{int}=10 nb⁻¹ after LS2 (~10¹¹ minium-bias Pb-Pb events)

→ New ITS with largely improved resolution (x3), especially at low p_{T}

- + Closer (3.9 cm \rightarrow 2.2 cm)
- + Thinner (1% \rightarrow 0.3% of X_0 / layer in inner barrel)
- + Smaller pixels (50x425 μ m² \rightarrow O(20x20) μ m² cell size)

ALICE RETECTOR UPGRARES

S. Beolè - IFD 2014

CURRENT TPC LIMITS

current TPC is read out by MWPCs

- gating grid of readout chambers closed to avoid ion feedback
 - •Limit space charge to tolerable level
 - •Effective dead time ~280µs, maximum readout rate: 3.5 kHz

• alternative: gating grid always open

•lon feedback $\sim 10^3$ x primary ions generated in drift volume •Large space charge effects (of the order of electrical field) Space point distortions (at 50kHz) of order of 1 m

-> not tolerable!!

TPC UPGRAPE

New readout chambers: MWPC replaced with GEM (Gas Electron Multiplier)

- + No gating, small ion feed-back (see next slide)
- + Studying optimization of pad-planes to maintain standalone momentum resolution
 - ... but existing pad-planes could still be used
- + limited degradation of point spatial resolution for $|\eta| < 0.75$

w/o affecting momentum resolution for TPC + ITS tracks

ONGOING R&D - ION BACKFLOW

Results for 3-GEM

ε: number "back-drifting" ions per electron reaching the GEM stack

IBF (E_) for Ne-CO_-N2 (90-10-5) 55Fe E_{TP} = 0.1 kV/cm ≝^{0.07} source E₁₉ = 0.15 kV/cm 0.065 E₁₉ = 0.2 kV/cm Drift foil/ 0.06 E_m = 0.3 kV/cm Cathode E_m = 0.4 kV/cm 0.055 Em = 0.5 kV/cm 25 mm 0.05 E₁₂ = 0.6 kV/cm $E_{drift} = 400 \text{ V/cm}$ 0.045 move to 4-GEM GEM 1 0.04 E_{T1} GEM 2 0.035 E_{T2} GEM 3 Етз 0.03 GEM4 Eind 0.025 Readout foil, Anode 0.02^{tt} 1 pad 5.5 E_{T1} (kV/cm) 35

Preliminary results for 4-GEM system with larger pitch (S-LP-LP-S)

R&D

RATA FLOW, THE NEW RAQ AND HLT SYSTEMS

- ✗ Continuous read out of 50kHz of Pb-Pb interactions
 - + Increase of number of events to be recorded by ~2 orders of magnitude
 - + Severe requests to the online & offline systems (O² project)
- ✗ New DAQ and HLT systems

dedicated talk by Silvia Amerio in Trigger Session, Thursday

S. Beolè - IFD 2014

ITS UPGRADE

outer layers	CERN China Czech Republic	Geneva Wuhan Prague
	Czech Republic France	Řež u Prah Grenoble
middle layers /	France	Strasbourg
	Italy	Alessandria
inner barrel	Italy	Bari
	Italy	Cagliari
	Italy	Catania
	Italy Italy	Frascati Padova
	Italy	Roma
	Italy	Torino
	Italy	Trieste
	Netherlands	Amsterdan
7 layers of monolithic silicon pixel detectors	Pakistan	and Utrech Islamabad

×	7 layers of monolithic silicon pixel detectors
	(MAPS)

- + inner barrel (3 layers around interaction point)
- + outer barrel (2 middle + 2 outer layers)
- Italy mainly involved in:
 - + chip design
 - + outer barrel:
 - × contruction (30-40% of outermost layers)
 - × design of support structure
 - × assembly and commissioning

Country	City	Institute
CERN	Geneva	European Organization for Nuclear Research
China	Wuhan	Central China Normal University (CCNU)
Czech Republic	Prague	Faculty of Nuclear Science and Physical Engineering.
check inspanse		Casch Technical University
Careh Barahlia	Ďaž u Druhu	Nuclear Dission Institute of the ASCP
Econom Economic	Crenchle	Laboratoira da Dhusique Substanique et de Cosmologia
Figure	citenooie	(LDSC) CNDS IN2D2 Unimpité Impite Engine Insti-
		(LPSC), CNRS-IN2P3, Universite Joseph Fourier, Insti-
12	C. 1	tut Politechnique de Grenoble
France	Strasbourg	Institut Plundisciplinaire Hubert Curien (IPHC), Uni-
5 .1	41 11	versite de Strasbourg, CINRS-IN2P3
Italy	Alessandria	Gruppo collegato INFN e DiSIT - Universita del
	n .	Piemonte Urientale
Italy	Bari	Sezione INFN e Dipartimento di Fisica dell'Università e
		del Politecnico di Bari
Italy	Cagliari	Sezione INFN e Dipartimento di Fisica dell'Università di
		Cagliari
Italy	Catania	Sezione INFN e Dipartimento di Fisica dell'Università di
		Catania
Italy	Frascati	Laboratori Nazionali INFN di Frascati (LNF)
Italy	Padova	Sezione INFN e Dipartimento di Fisica e Astronomia
		dell'Università di Padova
Italy	Roma	Sezione INFN e Dipartimento di Fisica dell'Università
-		"La Sapienza" di Roma
Italy	Torino	Sezione INFN e Dipartimento di Fisica dell'Università di
		Torino
Italy	Trieste	Sezione INFN e Dipartimento di Fisica dell'Università di
-		Trieste
Netherlands	Amsterdam	NIKHEF and Institute for Subatomic Physics, Utrecht
	and Utrecht	University
Pakistan	Islamabad	Faculty of Sciences, COMSATS, Institute of Information
		Technology
Rep. of Korea	Incheon	Inha University, College of Natural Sciences
Rep. of Korea	Pusan	Pusan National University
Rep. of Korea	Secul	Vonsei University
Russia	St. Petershurg	Institute of Physics St. Petersburg State University
Skarakia	Kožice	Exculty of Electrical Engineering and Informatics. Tech
CHOVARAL	Realec	raculty of Electrical Engineering and Informatics, Tech-
Cl	Varia	Employ of Science DS Scienci University
Slovakia	Kosice	Faculty of Science, P.S. Salarik University
Slovaka	Nosice	Institute of Experimental Physics, Slovak Academy of
(T) - 1 - 1	N 11	Sciences
Thailand	Nakhon	Suranaree University of Technology
	Ratchasima	
Ukraine	Kiev	Bogolyubov Institute for Theoretical Physics (BITP)
United Kingdom	Liverpool	University of Liverpool
United Kingdom	Chilton	Rutherford Appleton Laboratory (RAL)
United Kingdom	Warrington	STFC Daresbury Laboratory
United States	Austin, TX	University of Texas Austin
United States	Berkeley, CA	Lawrence Berkeley National Laboratory (LBNL)
United States	Chicago, IL	Chicago State University 10

West Lafayette, IN Purdue University

United States

NEW ITS: UPGRADE DESIGN GOAL

- × Improve pointing resolution by a factor $\sim 3(5)$ in $r\phi(z)$
 - inner layer as close as possible to IP (39mm -> 22 mm)
 - + smaller beam pipe (R = 19 mm)
 - smaller pixel size MAPS O(20μmx20μm)
- High standalone tracking efficiency and p_T resolution
 - Increase granularity: 6 layers -> 7 layers of smaller pixels
 - + Spatial resolution $\sigma(r\phi,z) \sim 4-6 \mu m$
 - Increase radial extension: 39-430 mm -> 22-430 (500) mm
- × Fast readout:
 - readout of Pb-Pb interactions at > 50 kHz and pp up to 1 MHz

pALPIDE-FS chip Chip dimensions 28.672 μm x 14.836 μm

- Less material budget: thin sensors, 7 layers of monolithic pixel detectors (area 1.5x3 cm²; thickness=50µm)
- goal:
 - + 0.3% X₀ inner layers
 - + 0.8% X₀ outer layer

- Fast access for yearly maintenance:
- + insertion/removal during yearly LHC shutdown

ALICE

PERFORMANCE EXAMPLE: A

× $\Lambda_c c\tau$ =60 µm, to be compared with D⁺ $c\tau$ =300 µm → Measurement not possible in Pb-Pb with current ITS

With new ITS and high-rate, measure charm baryon/meson enhancement from 2 GeV/c $^{\rm 11}$

Di-electrons mass spectrum after bkg subtraction

DI-ELECTRONS FROM QGP AND VECTOR MESONS

- Physics Signals:
- Direct $\gamma \rightarrow e^+e^-$ (QGP radiation)
- Vector mesons (ρ) $\rightarrow e^+e^-$ (chiral symmetry restoration)
- * Main backgrounds:
- Conversions in the material (from $\pi^0 { \rightarrow } \gamma \gamma)$

- **x** Role of new ITS:
- Smaller material thickness \rightarrow less conversions
- High tracking efficiency \rightarrow measure conversions
- Resolution \rightarrow subtract displaced charm electrons
- Allow for high rate \rightarrow statistical significance x10

13

NEW ITS: DETAILS ABOUT TECHNOLOGY

- Detector: monolithic silicon pixels for all layers
 - + chip architecture developed in collaboration between different institutes (CERN, INFN, INPC Strasbourg, RAL, Wuhan)
 - + R&D in progress
 - + decision foreseen by the end of 2014
- Mechanichal support: Carbon Fibre reinforced structure with embedded polyimide cooling pipes
 - + inner barrel ->
 - × 300mm length, 1.6 g weight
 - $\star\,$ tubes inner diameter: 1.024mm; wall thickness: 25 μm
 - + outer barrel ->
 - × 1500mm length, 80 g weight
 - $\star~$ tubes inner diameter: 2.67mm; wall thickness: 65 μm
- * Cooling baseline: water in leakless mode
 - + Requirements:
 - × Stave operative temperature shall not exceed 30 °C, Δ T~5 °C
 - × max power dissipation: 300mW/cm^2 (IB); 100mW/cm^2 (OB)
 - + Test results
 - × IB: water flow rate below 31lh⁻¹
 - × OB: water flow rate below $12lh^{-1}$

dedicated talk by Gianluca Usai in Vertexing & Tracking Detectors 1

INNER BARREL

Overall material budget per layer X/X₀: present SPD ~1.14% \Rightarrow ~ 0.3%

OUTER BARREL

S. Beolè - IFD 2014

OUTER BARREL MORULE

Module: 2x7 pixel chips

- + Flex Printed Circuit open points:
 - × AI (or Cu?) on polimyde
 - × 2 main read-out options under study

 Daisy chain of 49 chips (TDR); assuming 20 Mb/s chip, 1 Gb/s total bandwidth in each segment -> high speed necessary along all data paths (and drivers)

* Masters parallel: every masters drives its data line at 160 Mb/s max; Low speed communication from neighborhood chips to the master

- + Module assembly procedure: main constraints are precision (final chip position tolerance \sim 5-10 $\mu m)$ and time
 - manual chip positioning: procedure developed in INFN Bari (1 module per day)
 - automatic chip positioning: procedure under study in collaboration with VEA company (CERN):
 - Linear Positioning Stages (X,Y,Z) have been preferred to robotic arms (faster but less precise)
 - time estimate:

for IB: 9 chips \rightarrow ~ 2 h 20'

for OB: 2x7 chips $\rightarrow ~ 3 h 38'$ 17

MATERIAL PROCUREMENT AND CIRCUIT MANIFACTUING ISSUES

- Material: Al on polymide
 - + sputtering (FHR, Dephis)
 - + local deposition (Trustech)
 - + laminated polymide (H'Old)
 - × siliconic glue
 - × acrylic glue (mono/bi-component)

- **x** Manifacturing:
 - + chemical etching
 - not easy to find companies willing to modify production lines (Cu-> Al)
 - Haser ablation (Microla Optoelectronics, LaserPoint)
 - × laser power tuning
 - × laser beam focus optimization
 - file format compatibility (Gerber to AutoCAD)

FPC TO CHIP INTERCONNECTION

Baseline:

- laser soldering of SnAg soldering balls with commercial machine developed br Dr. Mergentaler company
- optimized @ CERN (CERN + INFN Bari)
- very good results obtained after 6 months R&D (100% good contacts on 5 single chip FPCs in the same batch)

dedicated talk by Claudia Gemme in Vertexing & Tracking Detectors 2

Extensive test to tune the laser profile and validate the procedure

- + Electrical daisy-chain test of 50 contacts
- + Microscope inspection
- + Metallurgical cross-section analysis + SEM 19

POWER BUS OPEN ISSUES

x Guidelines:

- material budget goal: X/X₀ ~0.8% -> NO COPPER
- maximum voltage drop allowed on chip: 200mV
- + chip power consumption: 70-100mW/cm²
 - × 14x7x2 chips per stave -> ~30-45W per stave

- Fabrication issues:
 - + material procurement: laminated alluminum?
 - + chemical ablation
 - × @ CERN?
 - × looking for commercial partners
 - + holes metallization and pad plating
 - × critical on Al laminated polymide
 - × feasible with sputtered AI
- Interconnectio PB to FPC:
 - + Sn soldering
 - + Laser soldering

Ļ	Ļ	J	J	Ļ		, J
/lodule 0	Module 1	Module 2	Module 3	Module 4	Module 5	Module 6
Ţ						J [

- **x** TDR layout:
 - + parallel powering
 - + ~50-100μm AI + 50μm Polymide + ~50-100μm AI long BUS
- **x** Alternative solution:
 - + serial powering (@ NIKHEF)
 - + Using shunt regulators on module
 - × Discrete
 - × External FET, control in chip
 - × Fully integrated in chip

CONSTRUCTION @ INFN

- Goal: 30-40% of the outermost layers
- **x** Baseline:
 - + 2 centers for MODULE production
 - + 1 center for STAVE assembly (LNF)
 - stave assembly developed in INFN Torino + Cagliari
- **×** Timeline:
 - + production starts 2015
 - + module & stave construction ends 2017

- outer barrel support cones and end-wheels designed in INFN Padova
- half barrel and barrel assembly @ CERN 2017/2018
- installation & commissioning 2018/2019

ITS INSTALLATION GUIDELINES

- RAPID ACCESS for yearly mainteinance
 - + 3-4 months time (LHC yearly shut down)
- × excludes the possibility of displacing the surrounding detectors
 - the new ITS has to be translated approximately 3 meters along the beampipe to allow for this accessibility (out of the TPC)

PRELIMINARY INSTALLATION SEQUENCE

- * TPC in parking position
- Two temporary rails fixed to the Absorber
- * Beampipe under vacuum to verify flange connection
- **x** TPC back to nominal position
- Beampipe alignment
- Outer barrel installation
- Inner barrel installation

ITS IN PLACE

MFT

ITS inner

TPC

S. B olè - IFD 2014

4 ALICE

EVENT SIZE AND RATES

× Event size of major systems, I/O rates of online system

Detector	Event siz After zero suppression	e (Mbyte) After data compression	Input to online system (Gbyte/s)	Peak output to loca data storage (Gbyte/s)	AVerage of computing (Gbyte	utput to centers e/s)
ITS	0.8	0.2	40	10.0	1.6	6
TPC	20.0	1.0	1000	50.0	8.0)
TRD (20kHz)	0.3	0.1	6	2.0	0.8	3
Others (1)	0.5	0.25	25	12.5	2.0)
Total	21.6	1.55	1071	74.5	12.4	4
		Data	format	Data reduction factor	Event size (Mbyte)	
		Raw data		1	700	
		Zero suppression (FEE)		35	20	
Optimize data reduction for TPC: clustering, data format		Clustering (HLT)		5-7	~3	
		Remove cluster to trac	Remove clusters not associated to tracks (HLT)		1.5	
		Data format optimization (HLT)				