

TDAQ@HL-LHC Trigger/DAQ Session: Introductive Talk

Donatella Lucchesi, Roberto Carlin, Andrea Negri

HL-LHC trigger requirements

- ATLAS&CMS Physics goals
 - High precision Higgs studies
 - EWK and top scale physics
 - SUSY and exotics searches
- Keeping same signal acceptance as 2012
- Trigger thresholds
 - They are already near the energy scale of interesting processes
 - Increasing them will reduce signal efficiency
 - Eg: p_T 20 → 30 GeV implies an acceptance reduction of a factor 1.3 1.8
- T/DAQ base requirements
 - <u>Maintain</u> p_{τ} -thresholds at ~ 20 GeV for single electron and muon trigger to preserve acceptance for W, Z, tt, H
 - <u>Maintain</u> system flexibility to be able to adapt to new discoveries or changes in background

Trigger/DAQ challenges

- Boundary conditions: moving from LHC Run 1 to HL-LHC
 - E_{CM} x 1.8: 8 → 14 TeV
 - Lumi x 7: 7 x $10^{33} \rightarrow 5 x 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
 - **<µ> x 4**: 35@50ns → 140@25ns
- T/DAQ challenge: try to maintain ~loose and inclusive selections w/
 - Higher interaction rates for physics and backgrounds
 - About 10 times more tracks per bunch crossing (in $|\eta|$ <2.5)
 - Degraded HLT algorithm performance due to increased hadronic activity
 - Reduced rejection from isolation (electron, photons)
 - Increased fake rates in muon systems
 - Degraded missing $\mathsf{E}_{_{\mathsf{T}}}$ and jet triggers cuts
- This implies
 - Increase trigger acceptance rates at each trigger level and at the output
 - Bring more information to L1
 - Much more HLT processing power needed
 - Porting of offline algorithms and techniques to HLT

T/DAQ operations @ run 2

- Current Trigger/DAQ working points for ATLAS & CMS
 - − L1 accept \leq 100 kHz
 - L1 latency: 2.5 vs 4 μs
 - Event Building: 10 vs 100 kHz
 - HLT accept: ~ 1 kHz
- This does not scale up to HL-HLT
 - Relevant trigger objects will sum up to about 500 kHz
 - E.g.: extrapolated L1 trigger rates based on phase-1 HW (ATLAS)

Trigger	Estimated L1 Rate
EM_20 GeV	200 kHz
MU_20 GeV	$>40\mathrm{kHz}$
TAU_50 GeV	50 kHz
di-lepton	100 kHz
JET + MET	$\sim 100\mathrm{kHz}$
Total	500 kHz

T/DAQ operations @ HL-LHC

- Readout (RO) constraints
 - <u>CMS</u>: latency \leq 10 μ s
 - <u>ATLAS</u>: latency \leq 20 µs, RO \leq 200 kHz
 - Dead material for Inner Detector RO
- L1 output rate raising
 - <u>CMS</u>: L1: 500 1000 kHz (20 10 μ s)
 - ATLAS: L0: 500 kHz (6 μs)
 → L1: 200 kHz (14 μs)
- Bring more information to L1
 - New track triggers
 - In ATLAS after L0 preselection
 - Finer granularity calo & muon information
- HLT output at 5 10 kHz
 - Downstream computing limit
 - Rejection factors: <u>CMS</u> ~100
 ATLAS ~40

Read-out requirements

- Event size ~ 4MB
 - Based on linear extrapolation
- CMS: full event building at 0.5 1 MHz
 - 4MB @ 1 MHz = ~ 32 Tb/s
- Equivalent to 500 links @ 100 Gb/s
 - By the end of LS2 100 GB/s will be readily available
- Switch capability almost possible today
 - no problem in 10 years
- New packaging and interconnect technologies seems able to provide required performance
 - ΑΤϹΑ, μΤϹΑ
- In not radiation environments all network and link needs will be satisfied by industry
 - In radiation hard area moving to GigaBit Transceiver architecture

HLT Processing Power

- HLT farm input rate x5 x10 (0.5 1 MHz)
 - Output rate x10, i.e.: same rejection factor as run2
- Moving from 8 to 14TeV will give a \sim x2 rate increase
 - More precise evaluation in run2
- HLT processing time
 - So far, it almost scale with < μ >, but non linearity observed in offline
 - Not obvious how it will scale up to 140

HLT Processing Power

- CMS estimates x25 x50 factor increase in needed HLT processing power
 ~10 M HEP-SPEC-06
- Price performance scaling extrapolation: 25%/year
 - Assuming a flat budget
 → Factor ~ x10 for phase-2
- Deficit factor x2.5 x5

- Market is providing alternative solutions to optimize performance/costs: ARM, Atom, GPUs, FPGA
- Possibility to share resources with Tier-0
- But the SW must be able to fully exploit the H/W capabilities
 - This is not the case of the current HEP S/W
 - More parallelism at all levels and large S/W improvements are required

Before Phase 2

- In Phase 1, ALICE and LHC-b are moving to triggerless architectures
 - Eg: LHC-b will execute whole trigger on CPU farm
 - up to 40 MHz input rate and 20 kHz output rate
- They will face in Phase 1 many of the network and HLT processing issues expected for Phase 2
 - LHC-b estimates 8M HEP-SPEC-06
 - Factor ~2000 wrt today
 - Comparable with ATLAS&CMS phase 2
 - LHC-b DAQ bandwidth will be ~ 32 Tb/s
 - i.e. compatible with CMS Phase-2
- Triggerless option for ATLAS&CMS seems unfeasible
 - Aggregate B/W: ~1200 Tb/s (x750 wrt today)
 - HLT Processing power: ~360M HS06 (x2000 wrt today)
 - Too much dead material for tracker readout

Conclusions and hot topics

- In phase 2 the ATLAS and CMS trigger rates will be increased by a factor ~10 at all the levels
- This requires bringing more information at L1
 - Track trigger information at L1 will provide the required trigger efficiency for electrons, muons, taus, MET and jets
 → Topic of Alberto's talk
 - The higher rate and the track trigger integration entail major changes in each L1 trigger sub-systems: finer-grain and higher bandwidth. E.g. improved L1 muon triggers
 → Topic of Nicola's talk
- HLT will face challenging scalability issues related to rates and pile-up
 - Alice and LHC-b will face those problems already in Phase-1
 - → Topic of Silvia's talk