

INFN Mitate Narseal & Frica Nacional

IFD2014 INFN Workshop on Future Detectors for HL-LHC

Calorimetry at the HL-LHC [introduction and overview]

F. Cavallari (INFN - Roma1), F. Tartarelli (INFN - Milano), <u>T. Tabarelli de Fatis (</u>INFN and Univ. Milano-Bicocca)

TTdF - IFD2014 - Trento

HL-LHC and the calorimeters

- ALICE and LHCb physics program not directly impacted by the luminosity upgrade of HL-LHC
 - Planned upgrades (LSI÷LS2) not driven by HL-LHC
 - Limited scope of upgrades foreseen for Phase II
- Upgrades of the ATLAS and CMS calorimeters to enable full exploitation of the HL-LHC potential
 - Retain e/gamma identification and resolution
 - "Higgs boson stoichiometry" in exclusive decay modes
 - Access to rare processes (e.g. $H \rightarrow Z \gamma$, $HH \rightarrow \gamma \gamma bb$, ...)
 - **Good jet reconstruction in the forward direction**
 - Exclusive Higgs boson production modes via VBF scattering
 - EWSB test via WW scattering (WW system in the barrel)
 - **Good missing E_T resolution**
 - Key signature of 'new physics' and in Higgs decay modes

3000 fb⁻′

2010

2011

2012

2014 2015

2016

2017

2019 2020

2021

2023 2024

2025

2026

2027

2028

2029

2030

2031 2032

2033

2018 LS2

Ph

ase

Phase

H

I

HL

LHC

LS1

LS3

V

5x10³⁴ cm²

S

"140 vehicles were collided after a mass pile-up" Texas, Thanksgiving 2013

Pileup environment and performance challenges

Interactions per beam crossing: $< \mu > ~ 140$

Pileup and photon reconstruction

- Photon identification efficiency moderately damaged
 - E.g. ATLAS test with current offline algorithms
- Photon resolution possibly somewhat degraded
 - Additional term of O(1%) to the energy resolution of a $H \rightarrow \gamma \gamma$ photon in the barrel, induced by RMS fluctuations of the energy flow under a typical photon **defined by the Molière radius** (my guess, not an official ATLAS/CMS statement)
 - Additional contribution to the noise term

INFN

Pileup and jet reconstruction

- Fake jet rate from merged pileup jets
- Additional (soft) component to jets
 - Affect missing E_T and VBF tagging
- Mitigation (will require tuning at HL-LHC)
 - Increased thresholds on calorimeter hits,
 PFlow reconstruction / soft track filtering
 - Association of charged particles to the vertices
 - \checkmark Extended tracking from | η |<2.5 to | η |<4 beneficial

Possible additional handle from *extreme* time resolution on shower deposits (30-40% of jet energy from neutrals)

- Spread of vertex time ~ 300 ps (bunch length)
- 'Effective occupancy' similar to current LHC for time resolution ~30 ps
- Designated device for shower timing
- Exploitation of timing in existing calorimeters

Details P. Meridianis' talk

TTdF - IFD2014 - Trento

March 13, 2014

INFN MiB,

Rm1,

To,

Ts

Pileup and calorimetric triggers

- Efficient and selective triggers at low thresholds require
 - Combination with tracker information (efficient tau-id, ele-id)
 - 2. Highly granular information (crystal / cell level rather than 'tower')
- Planning electronics upgrades for full 40 MHz data transfer from the calorimeters (both ATLAS and CMS)
 - Increase bandwidth and latency, powerful HW/MW for processing
 - Address longevity in parallel: install front-end radiation tolerant components – if necessary
 Details F.Tartarelli's talk

Radiation environment and longevity issues

Radiation six times higher than nominal LHC design

ATLAS: longevity appraisal and upgrade plan

- LAr intrinsically radiation tolerant
- Moderate radiation damage in TileCal (operable throughout Phase II)
- FCAL (LAr) may suffer at high instantaneous rate
 - Space charge effect, excessive heat could lead to bubble formation

Atlas: FCal mitigation options

- Do nothing (rate effect manageable)
- 2. Replace FCal with a new sFCal
 - Smaller gaps (100µm), smaller resistor (100KΩ), cooling loops
 - Requires opening of the LAr endcap cryostat
- 3. Install additional calorimeter in front (MiniFCal) to decrease the particle flunece
 - Various possibilities (LAr, Xe, diamond sensors)
- Studies still ongoing

INFN not involved

INFN

10

CMS: longevity appraisal and upgrade plan

- Substantial performance degradation in the ECAL and HCAL endcaps
- Moderate damage in the ECAL and HCAL barrel
 - Increase of APD dark current in ECAL will require mitigation
- Moderate degradation in HF (operable throughout Phase II)

EE+ES HE HF ECAL: PbWO₂ crystals HB/HB: Sci Tiles/WLS HF: Quartz fibre Calo

Replacement/upgrade of both ECAL and **HCAL** endcaps in LS3

Upgrade of the ECAL FÉ electronics: 40 MHz data stream (barrel)

HCAL upgrade in LS2

- **Possible** mitigation of the APD current
 - VFE with faster shaping time (also, improved timing, spike rejection)
 - Cooling of the barrel

Details on electronics upgrade in F. Tartarelli's talk TTdF - IFD2014 - Trento

INFN

CMS: Projected radiation damage

- ECAL endcap extensive test beam studies under proton-irradiation
 - Progressive deterioration of energy resolution and trigger efficiency
- > Light output below 10% beyond

- ECAL barrel APDs current increase would sizably impact the noise term contribution to the resolution
 - Further appraisal with designated irradiation test ongoing (INFN Rm1)

- Differential loss with depth (mitigated by longitudinal segmentation in LS2)
- Less than 5% response at $|\eta|$ >2.1 beyond 500 fb⁻¹

CMS endcap options for HL-LHC

- (I) Maintain current structure
 - Replace ECAL and refurbish HCAL with rad-hard technologies and improved granularity
 - "Emphasis on photon reconstruction"
- (2) Merge EM and HAD compartments into a (rad-hard) dual readout calorimeter
 - "Emphasis on jet resolution"
- (3) Finely segmented calorimeter (à la CALICE)
 - "Readout as much information as possible"
 - Bonuses (common to ~all option)
 - Extra space for an additional muon station
 - Extension to $|\eta| = 4$ under consideration
 - Possible integration of a fast-timing module

Down-selection process in progress

• 'No more than two options in the CMS Technical Proposal for HL-LHC (this fall)'

March 13, 2014

CMS Endcap 1: EE Shashlik + HE rebuild

TTdF - IFD2014 - Trento

CMS Endcap 2:

Combined Function Calorimeter (CFC)

- Dual readout of Cerenkov (Q) and scintillation (S) light
 - Optimal hadron energy resolution
 - Q/S ratio additional handle in jet/photon ID
- CFC layout (optimization ongoing)
 - **Brass / Quartz / SiO₂:Ce fibres**
 - Packing fraction $\sim 10\%$ (fibres pitch ~ 2 mm)
 - [10000 km and ~5 millions of fibres]
 - Molière radius 2.0 cm (2.2 cm in PbWO₄)
 - Depth from pulse time profile (~ 10 samples)
- **R&Ds** and challenges BK/INFN
 - **Rad-hard scintillation fibre** (2 m long)
 - Photosensors GaInP- / Si-PM / VPTs
 - (less demanding than / common to Shashlik)

AT LAS

CMS Endcap 3:

High Granularity Calorimeter (HGC)

- Granular readout for pileup mitigation
- ECAL section: Si/Pb-Cu (optimization ongoing)
 - ▶ Si pads (from 0.9x0.9 cm² to 1.8x1.8 cm²)
 - Molière radius 2.5 cm (2.2 cm in PbWO₄)
- HCAL section: 4λ Si/Brass + 5λ HE (rebuild)
 - I6 planes ECAL + I5 planes HCAL
- R&D and challenges
 - Rad-hard Si sensors (<300 μ m):
 - Hexagonal pads from 8" wafers
 - ▶ 670 m² 5.1 million channels
 - Cooling to -30 °C (~300 W/m²)
 - Low power electronics, large scale cooling system
 - Trigger formation/signal readout
 - High bandwidth links

Calorimetry upgrade summary

Detector upgrades are specific to the experiments

- Mainly driven by longevity issues with optimization of the new detectors to better cope with HL-LHC environmental challenges
- Targeted R&Ds in progress:
 Details in M. Lucchini's, A. Gola's and P. Meridiani's talks
- Electronic upgrades share a common goal (ATLAS and CMS):
 - Ditial part: provide highest possible granularity and resolution at the Level-1 trigger processors to handle increasing pileup
 - Send all data off detector for trigger and readout at 40 MHz
 - Process the data with more powerful hardware or software
 - Install front-end components which are more radiation tolerant if necessary
 - Upgrade to the analog electronics under consideration
 - Details in F. Tartarelli's talk

INFN

BONUS

TTdF - IFD2014 - Trento

📡 🌠 Impact of upstream material

HE Rebuild R&D goals

- Technology of HE is inexpensive and effective, but not radiation tolerant for full HL-LHC program in the front of HE
- R&D into replacement with
 - Different geometry (finger tiles) and different materials
 - Liquid scintillator
 - Green scintillators with red/orange WLS
 - Quartz tiles
 - Crystal fibers
 - Rebuild of the absorber also being considered
 - Too active to be worked on in LS3
 - Can be pushed towards IP given EE compactness

20

INFN

CMS: Projected radiation damage

ECAL endcap extensive test beam ECAL barrel APDs current increase studies under proton-irradiation would sizably impact on the noise term contribution to the resolution Progressive deterioration of energy resolution and trigger efficiency Further appraisal with designated irradiation test ongoing (INFN Rm1) \rightarrow Light output below 10% beyond: Dark current (µA) CMS Preliminary 2011-2012 100 | Average dark current per channel (2 APDs) = 2.6 at 500 fb⁻¹ ECAL Barrel n=0 at 3000 fb + n=0.45 n=0.8 Relative response η=1.15 n=1.45 Integrated Luminosity 10 0.8 0.6 0.4 10 fb⁻¹, 5E+33 cm⁻²s⁻¹ 0.2 10 100 fb⁻¹, 1E+34 cm⁻²s⁻¹ Simulation: 500 fb⁻¹. 2E+34 cm⁻²s⁻¹ 0 07/11 01/12 07/12 1000 fb ¹, 5E+34 cm ²s ¹ 50 GeV date (month/year) 2000 fb⁻¹, 5E+34 cm⁻²s⁻¹ 3000 fb¹, 5E+34 cm²s¹ HE extrapolation from *in-situ* data: 1.5 2.0 2.5 3.0 Differential loss with depth (mitigated n → Resolution at | η |=2.2 would degrade from ~2% at 500 fb⁻¹ to ~10% at 3000 fb⁻¹ by longitudinal segmentation in LS2) Less than 5% response at $|\eta|$ >2.1 from 500 fb⁻

CMS Endcap2: High Granularity Calorimeter (HGC)

