#### IFD2014 INFN Workshop on Future Detectors for HL-LHC Trento, March 11-13, 2014

ALIC



## LHC Muon Detectors:

#### Longevity and aging issues

<u>Working Group 4</u>: G.Aielli, W. Baldini, A. Bizzeti, , A. Ferretti, M. Gagliardi, F. Gasparini, P. Iengo, D. Pinci, G. Pugliese (chair), <u>P.Vitulo</u>

#### Outline:

- The ID card of the present detectors (with italian contribution)
- Aging by technologies (some examples)
- An overview of the previuos aging campaign (with comments)
- Priority aging tests
- Summary and recommendations

### The ID card of the present LHC Muon Detectors with Italian contribution

ALICE: RPC, CPC, (MRPC)
 ATLAS: MDT, RPC (uMegas)
 CMS: RPC, DT, (GEM, iRPC)
 LHCb: MWPC, GEM

In **red** Future Detectors



Most of the Experiments started Mass Production in early 2000

3

- Detector's Installation from 2004 to 2008
- The oldest Detectors are about 10 years old
- By the end of LS3 (HL-LHC) detectors will be 20 years old and be required to operate beyond the design specification and after 20 years from the construction (14 years of operation).
- Where detectors can not be replaced actions should be taken to improve their longevity (i.e. further layers can be added)
- Increasing the redundancy (i.e. with new layers) could also help to overcome the danger of aging effects
- □ All the detectors are gaseous (wire/parallel plate)

#### The rationale

- Previous R&D studies on detectors' aging aimed at assessing their «10 LHC year» longevity
- By the end of phase 1 the safety factors will be almost fully used
- FOR HL-LHC A NEW CAMPAIGN OF AGING STUDIES IS NEEDED
- MOREOVER, THE REQUEST FOR ECOLOGICAL GAS MIXTURES REQUIRES STUDIES OF AGING PROPERTIES OF NEW GREEN GASSES AND DETECTORS
- ALSO IMPORTANT THE STUDY OF NEW MIXTURES THAT CAN HELP MITIGATING THE AGING
- NEW DETECTORS FORESEEN
- The GAS MIXTURES CURRENTLY USED HAVE BEEN STUDIED WITHIN THE PREVIOUS AGING CAMPAIGN

Muon system lifetime at LHC depends on

Detector lifetime

Technology, aging properties ( wire chambers /parallel plates)
 Location (background level)
 Sensitivity to neutrons and photons (the main sources of bkg)
 Accumulated charge per hit ( according to working regime )

Frontend electronics lifetime

Resistance to irradiation
 Aging of components
 Components obsolescence (spares unavailability)

## Aging by technologies

#### **Drift/Wires**

«Classical aging» (and most studied from plasma physics): chemical reactions near anodes during avalanche formation leading to (conducting/insulating) deposits on electrodes surfaces

#### Preventing ageing:

- Clean procedures during chamber assembly
- Very clean gas system
- No hydrocarbons in gas mixtures
- No use of silicone
- ...and other (use of water, few percent of O<sub>2</sub>...) but some controversial





Nucl. Instr. and Methods **A515**, 53 (2003). Nucl. Instr. and Methods **A488**, 240 (2002).

#### Potential aging effects:

- Loss of gas gain and reduction of the plateau
- Loss of energy resolution
- o Increase of dark current
- Distortion of the pulse height distribution
- Electron emission (Malter Effect)
- o Sparking
- Self-sustained discharges
- Etching of the surfaces



M.Capeans MPGDWorkshop Sept07

### Example: MDT (ATLAS)

30 mm diameter tubes Ar/CO2 @ 3 Bar

Effects due to gas pollution





Nuclear Physics B (Proc. Suppl.) 150 (2006) 168–171 S.Zimmernmann, CERN-THESIS-2004-018

Use of gas filters led to a complete recovery.

Full Size Detectors used

♦ Now: recent studies on higher rate zones show no ageing effects up to now → expected to sustain HL-LHC following some consolidation works



From M. lodice (ATLAS)

#### Example: MWPC (LHCb)

• Effects of the gas on to the

materials (etching of RF4)

Ar/CO2/CF4

<sup>137</sup>Cs@Gif (2003) γ rates up ~30 kHz/cm<sup>2</sup> <sup>60</sup>Co@Calliope -ENEA (2009) γ rates up ~1kHz/cm<sup>2</sup>

NIM A 515 (2003) 220–225, NIMA 599 (2009) 171–175, NIM A 593 (2008) 319-323

 ♦ Good time resolution and eff up to 28nA/cm<sup>2</sup>
 ♦ Front-end dead time → expected to sustain HL-LHC following some consolidation works (electronics ...)



Full Size Detectors used Integrated Charge 0.25 C/cm to 0.4 C/cm (wires) and 0.8 C/cm<sup>2</sup> (cathode)

## Aging by technologies RPC

- Given an amount of integrated charge it gives a very different effect depending on how it is generated and depending on:
  - Working point: the lower the better
  - **Temperature**: the lower the better
  - **Relative humidity**: best value 40-45% for stable resistivity around  $5*10^{10} \Omega$  cm
  - Resistivity: the higher the better compatibly with the rate expectations
  - Coating: a stronger coating increase the detector endurance
  - **Gas composition**: HF production, the lower the better
  - **Gas change rate**: the higher the better

It turned out that in case of detector internal damage a current generated in ideal condition can heal the problem instead of worsening it!

## The atlas RPC ageing case (@ GIF)

- Recovery after extreme damage due to the recirculation (and dcs) failure
- Increase of the noise current up to 20 μA source off. Also the ohmic current increased
- RECOVERY MONITORED AT CONSTANT TEMPERATURE
  - DEEP CLEANING WITH PURE ARGON DISCHARGE
  - OPERATION AT REDUCED VOLTAGE (7000V)
  - 15% C4H10
  - 2 CHANGE/H
- EXTRA CURRENT DISAPPEARED COMPLETELY AND THE DETECTOR PERFORMANCE WAS AS BEFORE





IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 53, NO. 2, APRIL 2006

## Aging by technologies GEMs, μMEgas

Usually "Not expected" ...provided that the gas flow is adequate, as well as other recommendations (clean assembly material, clean gas systems, gas flow ...)





# Aging by technologies

- No aging effects up to 24 mC/cm<sup>2</sup> (and not expected)
- Rate capability up to 2.5 kHz/cm<sup>2</sup> (well above the ALICE requirement ) but can be much higher (→low resistivity glass)

Efficiency, time resolution Not affected after 24 mC/cm<sup>2</sup>

Full size detectors used





NIM A 579 (2007) 979-988

Some general parameters to be studied for an aging test:

□ Material : aging (after rad exposition ) and gas pollution due to outgassing

Detector:

- Dark current, Gain (integrated Lumi effects)
- Resistivity, Strip to strip capacitance, Shielding (at Design level)
- T,RH,P (for normalization)
- Efficiency, Rate capability, Plateau stability , Cl.Size (istant. Lumi effects)
- Sensitivity to neutrons and gammas
- Gas composition, Gas flow, Working point (aging mitigation)

□ Size of the detector/irradiated zone : full size , fully equipped

Electronics: Single Event Effects, Total Dose damage

### An overview (not complete) of the previous aging campaign....

| EXP   | Detector | IntCharge<br>(mC/cm2) | Full Size?<br>YES/NO | Counting<br>Rate<br>(Hz/cm2) | Aging/Comments                                                                   | Number<br>of<br>Detectors | Particle | Facility      | Use of<br>Fluorine in<br>the mixture |
|-------|----------|-----------------------|----------------------|------------------------------|----------------------------------------------------------------------------------|---------------------------|----------|---------------|--------------------------------------|
| ALICE | RPC      | 23                    | NO                   | 60                           | After 15mC/cm2 current instability (due to high working point)                   | 3                         | g        | GIF           |                                      |
| ALICE | RPC      | 50                    | NO                   | 60                           | NO                                                                               | 3                         | g        | GIF           | YES                                  |
| ALICE | MRPC     | 24                    | YES                  |                              | NO                                                                               | 5                         | g        | GIF           |                                      |
| ATLAS | MDT      | 4.8C/cm               | YES                  |                              | NO                                                                               | 2                         | g/n      | ENEA          | NO                                   |
| ATLAS | RPC      | 300                   | YES                  | 700                          | Incr. of rho, recover with RH, incr. of current recover with<br>iC4H10, good eff | 3                         | g        | GIF           | YES                                  |
| LHCb  | GEM      | 2200                  | YES                  | 2E+07                        | Etching of gem's hole due to low gas flow, recovered, NO overall                 | 3                         | g/pi     | ENEA/CER<br>N |                                      |
| LHCb  | GEM      | 1800                  | NO                   | 5E+07                        | 50% gain reduction, 20 V shift of the wp but still inside specs                  | 3                         | Xray/pi  | ENEA/PSI      | YES                                  |
| LHCb  | MWPC     |                       | YES                  | 3.5E+04                      | Good time res, eff up to 28 nA/cm2 but FEE dead time when full source on         | 1/3                       | g        | GIF/ENEA      |                                      |
| CMS   | RPC      | 50                    | NO                   | 200                          | NO, small increase of op. Voltage at 90% eff,small<br>decrase of counting rates  | 11                        | g        | GIF           |                                      |
| CMS   | RPC      | 25                    | YES                  | 200                          | NO, use of wet mixture to control electrode resistivity                          | 2                         | g        | GIF           |                                      |
| CMS   | RPC      | 230                   | NO                   | 800                          | NO                                                                               | 4                         | g        | Korea         | YES                                  |
| CMS   | RPC      | 500                   | NO                   | 3000                         | YES, dark current increase, bulk damage by HF, dark rate 3 g                     |                           |          |               |                                      |
| CMS   | RPC      |                       | NO                   | 2500                         | NO (d@50 MeV on Beryllium target) (some activation)                              | 2                         | n        | UCL           |                                      |
| CMS   | DT       |                       | YES                  | 1E+04                        | NO                                                                               | 2                         | g        | GIF           | NO                                   |

14

#### How much time an aging test may last (given a safety factor and acceleration factor)

Tecnology  
SF = x5 (Safety Factor)  
AAF= 10 ÷100 (Acceleration Aging Factor)  
Expected int charge 
$$\left(\frac{C}{cm^2}\right) = \left[\varepsilon \frac{Charge}{hit}\right] \times \left[\frac{0.5 \times 10^7}{LHCy}s\right] \times \phi_{particle}^{Experiment} \times SF \times [n^\circ LHCy]$$
  
Aging test int charge  $\left(\frac{C}{cm^2}\right) = \left[\varepsilon \frac{Charge}{hit}\right] \times [T\_test] \times AAF \times \phi_{particle}^{Experiment}$ 

If Aging test integrated charge = Expected integrated charge

$$[T\_test] = \left[\frac{SF}{AAF}\right] \times \left[\frac{0.5 \times 10^7}{LHCy}s\right] \times [n^\circ LHCy] = 0.1 \div 1 \frac{months}{LHCy} \times [n^\circ LHCy]$$

### **Common Test Facilities**

study gas aging

## Typical test stand for detector aging studies :

NB: For Gas Aging Studies a small cosmic stand (lab size) may be enough. After optimization a full test ot a facility can be foreseen.



- Used Tecnologies to Infrared Spectroscopy → Gaseous, Liquid, Solid samples
  - EDX (Energy Dispersive X-ray spectroscopy with electrons)  $\rightarrow$  solids samples
    - GS (Gas Cromatography)
    - MS (Mass Spectrometry)

## Synergy tests at work at GIF/GIF++

#### COMMON EFFORTS ALREADY STARTED BETWEEN:

ALICE, ATLAS, CMS / RPC HPL AND GLASS (BUT OTHER DETECTORS ARE WELCOME)

- "STANDARD" TESTS:
  - 1. MEASURE AND MONITOR CHAMBER AGEING CURRENT MONITORING STABILITY
  - 2. RPC RADIATION SENSITIVITY
  - 3. RPC RATE CAPABILITY
  - 4. PERFORMANCE UNDER IRRADIATION
- COMPARISON AMONG DIFFERENT FE PROPOSED
   PERFORMANCE ASSESSMENT UNDER STRESS
- SET-UP FOR HF MEASUREMENTS

FUNCTION OF CHAMBERS PARAMETER, IRRADIATION AND GAS MIXTURE COMPOSITION

• RPC CONSOLIDATION (IMPROVED CHAMBERS FOR THE EXISTING SYSTEM)



- INFRASTRUCTURE BEING DEVELOPED (FOR GIF++) AT THE OLD GIF INCLUDING:
- DCS AND DAQ (BY ATLAS)
- FLUORIDE MEASUREMENT TOOLS (BY CMS)
- DEDICATED GAS SYSTEM (BY ALICE)
- GAS HUMIDIFICATION AND DISTRIBUTION (CERN GAS GROUP)
- TEST ON BOTH PROTOTYPES AND PRODUCTION CHAMBERS

17

## Test on electronics

#### Single Event Effects measurement (SEE) – Active test – Goal: SEE cross section estimation

**Procedure:** supplied boards exposed to the beam , <u>open inputs</u>

- $\rightarrow$  number of events (due to interactions of particles with chips) counted  $\rightarrow \sigma = R/d$
- $\rightarrow \sigma = R/\phi$
- Acquisition time: from particles flux and interactions cross sections with Si
- $\rightarrow$  obtain a statistically significant number of events
- $\rightarrow$  **NO** need for a lot of fluence

Particles: Neutrons: thermal (interactions with boron), fast (E > MeV) and lons

Cumulative Effects measurements – Passive test -Goal: maximum tolerated fluence estimation Procedure: non supplied boards exposed to the beam → comparison between board's parameters before and after the irradiation Acquisition time: need to accumulate the right FLUENCE (1 year LHC...) Particles: Neutrons, Gammas

#### Priority Aging Tests ...

19

Single Event Effect and Total Ionizing Dose on New electronics
 <u>Neutrons</u> (to study Single Event Effects): from thermal up to 100 MeV (from 20 MeV up protons can «simulate» neutrons since inelastic cross section on Si almost equal )

 $\rightarrow$  <u>Photons</u> (to study dose damage) : <energy> 1 MeV and up to 10 MeV

- > New gas (green) mixtures and their aging properties
- > Aging and outgassing of new materials (especially for Upgrade detectors)
- > Detector Sensitivity to gammas and neutrons

In case spares from the mass production (that are getting old naturally) are available, aging test on them could infer some information on the ageing factor due to only the running life so far

#### Summary/Recommendations

Longevity expectations are quite good and existing detectors are expected to safely operate at HL-LHC ....provided that
 ...some additional changes (electronics, gas regime) will take place
 ...the continuous monitoring of the working parameters and possibly their modification (gas flow, working points, etc..) will be assured (aging mitigation)
 ... a consolidation , when required, will be planned and resources allocated
 ...the maintenance of the systems can be guaranteed

20

- New aging tests on <u>existing</u> and <u>new detectors</u>, <u>electronics</u> and new <u>green gas</u> <u>mixtures</u> are **necessary**
- ✓ ...Spare detectors (naturally aged so far) may be used
- ✓ ...Common efforts to share costs and to optimize facilities time sharing should be organized [Already good example of synergies among groups and detectors (Atlas,CMS,ALICE) (RPC,GEM,iRPCs) at GIF/++ to be sustained and expanded]
   ✓ ...In view also of the experiment's Technical Proposals for Phase 2 → short timescale (about 4 years)

## Backup

## Where?

### Facilities considered for the irradiation

Facility Beam LENA Pavia Neutrons Thermal ENEA Casaccia Neutrons PSI Villigen (Svizzera) Neutrons Louvain la Neuve (Belgio) Neutrons, lons ENEA Frascati Neutrons, gamma Fast TSL Uppsala Neutrons LNL Legnaro Neutrons, Ions, Gamma **CNAO** Pavia Carbon lons GIF (++) Gamma

#### ..and others in Italy and Europe..

22

# Example of a planned aging test at UCL with neutrons (CMS - RPC/GEMs) (Detector&Electronics)

13 h of beam time:
Measurement A: Detector irradiation:
6 h of beam time at 10 <sup>7</sup> n/cm<sup>2</sup>s

Constantly measure the chamber's sensitivity to neutrons.

- → After the irradiation, a recovery time of at least an hour without beam,
- → Followed by 1 h of irradiation, always with the same flux, : verification of possible irreversible aging

#### Measurement B: Front-End electronics irradiation:

#### <u>6 h of beam time at 10<sup>7</sup> n/cm<sup>2</sup>s</u>,

- → measurement of the SEE cross section as a function of the signal discrimination threshold
- → 50 min/run (divided in 5 acquisition intervals of 10 min, necessary in order to obtain a statistically significant number of events) for 7 different thresholds.
- → During all the 6h, the number of events induced by neutrons will be registered and the threshold values will be changed via software without the need of switching off the beam.

# Why full scale detectors are necessary in aging tests

Deposits on Non supplied and Non irradiated area



#### CMS RPC Aging induction test - post mortem analysis



<u>Oiled</u> ; gamma rate= **5 kHz/cm<sup>2</sup>** Integrated Charge = 578 mC/cm<sup>2</sup>

> <u>Non Oiled</u>; gamma rate= **3 kHz/cm<sup>2</sup>** Integrated Charge = 248 mC/cm<sup>2</sup>

25

Small size detectors

After/Before Ratio

10-180 in current and dark rate

## Extrapolation Summary (from WG1)

|                                                                                           | ATLA                                             | S            | CMS                                              |                       |  |  |
|-------------------------------------------------------------------------------------------|--------------------------------------------------|--------------|--------------------------------------------------|-----------------------|--|--|
| Extrapolation @                                                                           | RPC (barrel)                                     | MDT          | RPC (endcap)                                     | DT                    |  |  |
| L = 3 * 10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup><br>Lint = 500 fb <sup>-1</sup>  | 120 Hz/cm <sup>2</sup><br>60 mC/cm <sup>2</sup>  |              | 180 Hz/cm <sup>2</sup><br>67 mC/cm <sup>2</sup>  | 25 Hz/cm <sup>2</sup> |  |  |
| L = 7 * 10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup><br>Lint = 3000 fb <sup>-1</sup> | 280 Hz/cm <sup>2</sup><br>360 mC/cm <sup>2</sup> | 140 kHz/tube | 390 Hz/cm <sup>2</sup><br>495 mC/cm <sup>2</sup> | 55 Hz/cm²             |  |  |
| Detector<br>certified for                                                                 | 300 mC/cm <sup>2</sup>                           |              | 100 mC/cm <sup>2</sup>                           |                       |  |  |

RPC aging will exceeds the certified values GIF++ aging tests needed



| LHCb               |          | GEM                          |                               |          | MWPC                   |                               | ALICE              | RPC                   |                              | MRPC27                            |                              |
|--------------------|----------|------------------------------|-------------------------------|----------|------------------------|-------------------------------|--------------------|-----------------------|------------------------------|-----------------------------------|------------------------------|
|                    | Zone     | Charge<br>mC/cm <sup>2</sup> | Max<br>Rate<br><b>kHz/cm²</b> | Zone     | Charge<br><b>mC/cm</b> | Max<br>Rate<br><b>kHz/cm²</b> |                    | Max<br>Rate<br>Hz/cm² | Charge<br>mC/cm <sup>2</sup> | Max<br>Rate<br>Hz/cm <sup>2</sup> | Charge<br>mC/cm <sup>2</sup> |
| Run 1<br>(2010-12) | M1<br>R1 | 120                          | 350                           | M2<br>R1 | 30                     | 120                           | Run 1<br>(2010-12) | 15                    | 7                            | 14                                | 0.2                          |
| Run 2<br>(2015-17) | M1<br>R1 | 450                          | 600                           | M2<br>R1 | 100                    | 200                           | Run 2<br>(2015-17) | 15                    | 29                           | 14                                | 1.1                          |
| Run 3<br>(2019-21) | M2<br>R1 | 100                          | 300                           | M2<br>R2 | 200                    | 50                            | Run 3<br>(2019-21) | 55                    | 40 *                         | 95                                | 1.9                          |
| Run 4<br>(2024-26) | M2<br>R1 | 250                          | 600                           | M2<br>R2 | 400                    | 100                           | Run 4<br>(2024-26) | 55                    | 50 *                         | 95                                | 2.8                          |

\* Without FEE upgrade