Scintillating Fibers for Calorimetry Applications at HL-LHC INFN Workshop on Future Detectors for HL-LHC

M. Lucchini^{1,2}

¹INFN and University of Milano-Bicocca, Milan

²CERN - PH-CMX - Lab 27, Geneva

March 13, 2014

Marco Lucchini

Scintillating Fibers for Calorimetry at HL-LHC

Challenges for calorimetry at HL-LHC

High Luminosity LHC conditions:

- High pileup:
 - (140) multiple interactions in the same bunch crossing
- High radiation levels:
 - ionizing radiation dose up to ${\sim}1~{\rm MGy}$
 - \blacktriangleright charged hadron fluences up to $\sim 2 \cdot 10^{14} \mbox{ cm}^{-2}$

Requirements for calorimeters upgrade:

- 1. Fast time response
- 2. Radiation hardness to withstand HL-LHC conditions
- 3. Affordable costs and mass production

March 13, 2014 2 / 16

Fibers applications for CMS Endcap Calorimetry

1. ECAL

Shashlik/Sandwich
 (LSO/CeF₃) for sampling EE
 WLS fibers + quartz
 capillary to collect and
 transport light to the PD.

2. HCAL

- HE megatiles replacement with crystal fibers (LuAG)

- Crystal fibers as rad-hard active material

3. ECAL+HCAL

- CFC for dual readout calorimetry (SiO₂-DSB-crystal)
- Quartz clear fiber for cherenkov
- Ce-doped fibers for scintillation

Fibers geometry is estremely flexible and technology can be used for other designs of calorimeters.

Marco Lucchini

Scintillating Fibers for Calorimetry at HL-LHC

March 13, 2014 3 / 16

SiO₂:Ce Fibers for Dosimetry Application

- SiO₂ doping with rare Earth has been successfully developed for dosimetry applications [1]
- Sol-gel technique developed at Dip. Scienza dei Materiali Milano-Bicocca [2] (and with INFN CSN V for dosimetry application)

 Short fibers (~2 cm) + long clear fibers are used for dosimetry applications

- Fibers were tested after ~1 kGy of x-rays and showed no signal degradation
- R&D is needed to transfer this technology to calorimetry

Scintillating Fibers for Calorimetry at HL-LHC

SiO₂:Ce Fibers for Calorimetry

- Application to calorimetry being investigated within the CMS collaboration in a R&D program supported by INFN CSN I for 2014
- Collaboration with Dip. Scienza dei Materiali (University of Milano-Bicocca) for sample preparation and optimization
- Collaboration with industries: Polymicro and Southampton

Features:

As scintillator:

- Good light yield (~2000 ph/MeV)
- First measurements in many labs (Milano-Bicocca, CERN, TTU)

As wavelength shifter:

- Good optical matching with CeF3 emission peak
- First tests performed by

ETH-Zurich

SiO₂:Ce – Time response

Pulses measurements

- Pulse shape from fibers has been measured with Am²⁴¹ source
- Good agreement with previous measurements on bulk SiO2 [2]
- Non optimized yet for fast response, but fast component is present
- $\tau_1 = 55$ ns and $\tau_2 = 640$ ns

Specific R&D necessary to optimize the scintillation time:

- Quenching slow component by adjusting Ce concentration (a lower light yield might enhance non-radiative decays resulting in a faster response)
- Doping with Praseodymium: faster decay time but emission shifted to UV (based on succesful experience with crystals [3])
 - \sim 2 years could be required for this R&D

Marco Lucchini

Scintillating Fibers for Calorimetry at HL-LHC

SiO₂:Ce – Attenuation Length and Radiation Hardness

Attenuation Length

- Core properties are OK, but application to calorimetry requires longer fibers
- Surface effects dominate the light transmission inside fibers
- Attenuation length improvement with cleaning is observed
- Cladding is necessary (technique is known although it reduces the light collection efficiency due to smaller numerical aperture)

Radiation Hardness

- Radiation hardness was good for dosimetry applications
- Specific tests are required for HL-LHC doses
- Quartz is known to be radiation hard due to high content of OH⁻ [4] (good results were achieved for the HF calorimeter of CMS)

DSB:Ce Fibers

- New generation of scintillating material based on glass with Cerium nanoparticles
- Being developed by RINP and CERN

Features:

- Well developed mass production
- Radiation hardness improvement is possible optimizing production parameters

Under study:

- Selection of best quality raw material
- Optimization of dopant concentration

Marco Lucchini

Scintillating Fibers for Calorimetry at HL-LHC

March 13, 2014 8 / 16

LuAG:Ce Fibers

- Crystal fibers grown using micro-pulling down technique [5]
- Being developed by CERN, University of Lyon and Fibercryst within the Crystal Clear Collaboration (with support from the French National Agency for Research ANR)

Features:

- ► High density material → good Cherenkov radiator
- High light yield: $\sim 15000 \text{ ph/MeV}$
- Same material can be used for a dual readout calorimeter
- Preliminary tests on radiation hardness of bulk samples are promising $(\mu_{ind} \sim 1.5 \text{ m}^{-1} \text{ for both} 1 \text{ kGy } \gamma\text{-dose and } 3.5 \cdot 10^{13} \text{ p/cm}^2)$

Under study:

- Improvement of optical properties [6]
- Performance in beam tests [7]
- Improvement of radiation hardness

Scintillating Fibers: options overview

Overview of materials options

Material	Emission peak	Dominant decay	Light Yield	Density
	(nm)	Time (ns)	(ph/MeV)	(gr/cm^3)
SiO ₂ :Ce	440	55	2000	2.6
DSB:Ce	430	55	2000	4.0
$Lu_3Al_5O_{12}$:Ce	530	55	15000	6.7
Lu ₂ SiO ₅ :Ce	390	30	26000	7.1
Y ₃ Al ₅ O ₁₂ :Ce	550	90	24000	4.6
$Lu_3Al_5O_{12}$:Pr	308	20	13000	6.7

Crucial requirements

- Sufficient light yield
- Good attenuation length
- Good radiation hardness
- Emission peak matching
 - photodetectors QE or WLS excitation

 $\begin{array}{l} \mbox{Attenuation length of few meters} \\ \mbox{and LY} \sim 2000 \mbox{ ph/MeV are} \\ \mbox{sufficient not to affect constant} \\ \mbox{ and stochastic terms.} \end{array}$

Next steps

Different type of fibers will be tested in lab and with beam tests before and after irradiation

Radiation hardness studies:

- γ-irradiation up to 300 kGy (~ dose of HL-LHC) in progress ...
- Exposure to neutrons (up to fluence of $\sim 10^{16} \text{ n/cm}^2$) already planned at ENEA (Frascati) ...
- Irradiation with 24 GeV protons (up to fluence of $\sim 10^{15} \text{ p/cm}^2$) will be performed at CERN PS in September-October ...

Test beam studies:

- Evaluate fibers performance with high energy beams (light yield, timing, attenuation length, light collection efficiencies, ...)
- Validate calorimeters prototype resolution predicted by simulations
- Beam tests will be performed at FNAL (March-April),

Frascati (April) and CERN (October)

Summary

- Stringent requirements for calorimeters at HL-LHC
- Need to identify adequate technology and to optimize it
- ► Fibers have multiple applications in different calorimeter designs

Ongoing R&D on SiO₂ fibers

- Optimization of SiO₂:Ce fibers for calorimetry:
 - 1. Investigating options to improve fast time response
 - 2. Study of fiber cladding to improve attenuation length
 - 3. Study of radiation hardness
 - 4. Beam tests

Other fibers R&D

DSB:Ce fibers LuAG:Ce crystal fibers

References

M. Carrara et al., Characterization of a Ce3+ doped SiO2 optical dosimeter for dose measurements in HDR brachytherapy, Rad. Meas. 56, 312 (2013).

A. Vedda et al., Ce^{3+} -doped fibers for remote radiation dosimetry, Appl. Phys. Lett., 85 (2004) 6356. http://dx.doi.org/10.1063/1.1840127

J. Pejchal et al., J. Phys. D Appl. Phys. 42, 055117 (2009)

K. Cankoak et al., Radiation-hardness measurements of high OH-OH- content quartz fibres irradiated with 24 GeV protons up to 1.25 Grad, NIM A585 (2008) 20-27. http://dx.doi.org/10.1016/j.nima.2007.10.024

A. Yoshikawa, Challenge and study for developing of novel single crystalline optical materials using micro-pulling-down method. http://dx.doi.org/10.1016/j.optmat.2006.10.030

K. Pauwels et al., Single crystalline LuAG fibers for homogeneous dual-readout calorimeters, 2013 JINST 8 P09019. http://iopscience.iop.org/1748-0221/8/09/P09019/

M. Lucchini et al., Test beam results with LuAG fiber for next-generation calorimeters, 2013 JINST 8 P10017. doi:10.1088/1748-0221/8/10/P10017

T. Yanagida et al., Basic study of single crystal fibers of Pr:Lu₃Al₅O₁₂ scintillator for gamma-ray imaging applications. http://dx.doi.org/10.1016/j.nima.2010.08.114

M. Nikl et al., Single-Crystal Scintillation Materials. In: Springer Handbook of Crystal Growth, SPRINGER, ISBN: 978-3-540-74182-4 (Berlin), pp. 1663-1700.

Backup slides ...

Marco Lucchini

Scintillating Fibers for Calorimetry at HL-LHC

э

INFN

Calorimeters resolution

HE with LuAG fibers

Shashlik

- $X_0 \sim 0.51~{
 m cm}$, $R_M \sim 1.37~{
 m cm}$
- EM resolution (plot below):

- $X_0 \sim 1.2 ~{
 m cm}$, $R_M \sim 2.6 ~{
 m cm}$
- (current HE: $\frac{\sigma(E)}{E} \approx \frac{100\%}{\sqrt{E}} + 5.5\%$)
- Pions resolution (plot below):

CFC

- $X_0 \sim 2.0 ext{ cm}$, $R_M \sim 3.5 ext{ cm}$
- Pions resolution: $\frac{\sigma(E)}{E} \approx \frac{28.7\%}{sqrtE} + 1.1\%$
- EM resolution (plot below):

Marco Lucchini

Scintillating Fibers for Calorimetry at HL-LHC

March 13, 2014 15 / 16

CeF3-SiO2 optical coupling: proof of concept

Measurements made by ETH, Zurich (F. Nessi-Tedaldi)

First test of Ce-doped quartz fibers

Preliminary results

- Measurements using cosmics
- A wavelength-shifted signal is observed
- Various cross-checks have been performed (black paper between crystal and WLS, no crystal, no fibers, two crystals) and confirm the result

The ratio of direct-to-WLS light still needs the fibers to be optimized cosmic µ Ce:SIO2 fiber Light Output

March 13, 2014

16 / 16